Abstract:
Provided are a film for covering an entire outer surface of a secondary battery electrode assembly and a method for manufacturing the same, wherein the film comprises a mechanical support layer, a reduced graphene oxide layer disposed on an outer surface of the mechanical support layer, and a sealant layer disposed on an outer surface of the reduced graphene oxide layer, wherein reduced graphene oxide sheets of the reduced graphene oxide layer form electrostatic interaction between adjacent ones of the reduced graphene oxide sheets.
Abstract:
The present disclosure provides a cable-type secondary battery which includes: at least one inner electrode; a separation layer formed to surround the outer surface of the inner electrode and configured to prevent a short of the electrodes; a sheet-type outer electrode surrounding the separation layer or the inner electrode and formed by spiral winding; and a polymer electrolyte coating layer formed to surround the sheet-type outer electrode, wherein the sheet-type outer electrode is formed by spiral winding to avoid an overlap.
Abstract:
Provided is a multilayer cable-type secondary battery including: a first electrode assembly including one or more first inner electrodes, a first separation layer surrounding outer surfaces of the first inner electrodes to prevent short circuit of electrodes and a sheet-type first outer electrode spirally wound to surround the first separation layer; a third separation layer surrounding the first electrode assembly to prevent short circuit of electrodes; and a second electrode assembly including one or more second inner electrodes surrounding an outer surface of the third separation layer, a second separation layer surrounding outer surfaces of the second inner electrodes to prevent short circuit of electrodes and a sheet-type second outer electrode spirally wound to surround the second separation layer.
Abstract:
The present disclosure provides a cable-type secondary battery which includes: a cable-type electrode assembly comprising an inner electrode and a separation layer surrounding the outer surface of the inner electrode to prevent a short-circuit between electrodes; and a sheet-form outer electrode surrounding the outer surface of the cable-type electrode assembly, and satisfies the mathematical formula of C≥W (wherein C is the circumference of the section perpendicular to the longitudinal direction of the cable-type electrode assembly, and W is the width of the sheet-form outer electrode).
Abstract:
The present invention relates to an anode active material for a lithium secondary battery, comprising a carbon material, and a coating layer formed on the surface of particles of the carbon material and having a plurality of Sn-based domains having an average diameter of 1 μm or less. The inventive anode active material having a Sn-based domains coating layer on the surface of a carbon material can surprisingly prevent stress due to volume expansion which generates by an alloy of Sn and lithium. Also, the inventive method for preparing an anode active material can easily control the thickness of the coating layer.
Abstract:
Provided is a multilayer cable-type secondary battery including: a first electrode assembly including one or more first inner electrodes, a first separation layer surrounding outer surfaces of the first inner electrodes to prevent short circuit of electrodes and a sheet-type first outer electrode spirally wound to surround the first separation layer; a third separation layer surrounding the first electrode assembly to prevent short circuit of electrodes; and a second electrode assembly including one or more second inner electrodes surrounding an outer surface of the third separation layer, a second separation layer surrounding outer surfaces of the second inner electrodes to prevent short circuit of electrodes and a sheet-type second outer electrode spirally wound to surround the second separation layer.
Abstract:
A sheet-form electrode for a secondary battery includes a current collector, an electrode active material layer formed on one surface of the current collector, a porous polymer layer formed on the electrode active material layer, and a first porous supporting layer formed on the porous polymer layer. The sheet-form electrode can have supporting layers on at least one of the surfaces thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
Abstract:
Provided is a cable-type secondary battery extending longitudinally including a lithium ion supplying core comprising an electrolyte, an inner electrode support of a hollow structure formed to surround an outer surface of the lithium ion supplying core, an inner electrode formed on a surface of the inner electrode support and including an inner current collector and an inner electrode active material, a separation layer formed to surround an outer surface of the inner electrode to prevent a short circuit between electrodes, and an outer electrode formed to surround an outer surface of the separation layer and including an outer electrode active material layer and an outer current collector.
Abstract:
Disclosed is a cable-type secondary battery including an inner electrode including an inner current collector and an inner electrode active material layer formed surrounding an outer surface of the inner current collector, a separation layer formed surrounding an outer surface of the inner electrode to insert the inner electrode inside, an outer electrode active material structure formed surrounding an outer surface of the separation layer to insert the separation layer inside, the outer electrode active material structure including a porous polymer support and an outer electrode active material layer formed on at least one of an upper surface and a lower surface of the porous polymer support, and an outer electrode including an outer current collector formed surrounding the outer electrode active material structure to insert the outer electrode active material structure inside.
Abstract:
The present disclosure relates to a packaging for a cable-type secondary battery, surrounding an electrode assembly in the cable-type secondary battery, the packaging having a moisture-blocking layer comprising sealant polymer layers on both outer surfaces of a moisture-blocking film and a moisture-blocking film disposed between the sealant polymer layers, wherein the moisture-blocking layer is a tube form surrounding the electrode assembly, and the sealant polymer layers in both ends of the moisture-blocking layer are overlapped and adhered with each other in a predetermined part. The packaging according to the present disclosure can be used in a cable-type secondary battery to block moisture from being infiltrated into an electrode assembly, thereby improving the life characteristics of the battery and preventing the deterioration of battery performances.