Abstract:
A sheet feeder has a transmission mechanism which includes an output gear mesh with a transmission gear train, and a switch element, disposed between the transmission gear train and the output gear, for switching a rotational direction of the output gear. The switch element includes a movable arm, a driving gear driven by the transmission gear train, a switching gear set attached to the arm and meshing with the driving gear, and a clutch device for restricting movement of the arm to enable the switching gear set to be disengaged from the output gear. When the output gear meshes with the switching gear set, the output gear and a transmission shaft of the sheet feeding mechanism may change the direction of their rotation. When the output gear is disengaged from the switching gear set, the output gear and the transmission shaft of the sheet feeding mechanism are not driven by a power source.
Abstract:
A sheet feeder has a transmission mechanism which includes an output gear mesh with a transmission gear train, and a switch element, disposed between the transmission gear train and the output gear, for switching a rotational direction of the output gear. The switch element includes a movable arm, a driving gear driven by the transmission gear train, a switching gear set attached to the arm and meshing with the driving gear, and a clutch device for restricting movement of the arm to enable the switching gear set to be disengaged from the output gear. When the output gear meshes with the switching gear set, the output gear and a transmission shaft of the sheet feeding mechanism may change the direction of their rotation. When the output gear is disengaged from the switching gear set, the output gear and the transmission shaft of the sheet feeding mechanism are not driven by a power source.
Abstract:
A method for forming microlenses of different curvatures is described, wherein a substrate having at least a first and a second areas different in height is provided. A transparent photosensitive layer having a planar surface is formed on the substrate and then patterned into at least two islands of different thicknesses respectively over the first area and the second area. The at least two islands are heated and softened to form at least two microlenses of different curvatures respectively over the first area and the second area, wherein the higher an area is, the smaller the curvature of the corresponding microlens is.
Abstract:
A separation roller includes a body, a shaft assembly and two friction roller assemblies. The shaft assembly is connected to the body. The friction roller assembly is mounted on two ends of the shaft assembly and located on two sides of the body. The friction roller assembly contacts a sheet, and the body is separated from the sheet. The body provides a limiting torque to the friction roller assemblies through the shaft assembly to limit movement of the sheet. A sheet separating mechanism using the separation roller is also disclosed.
Abstract:
A complementary metal oxide semiconductor (CMOS) image sensor layout structure is described. The CMOS image sensor layout structure includes a substrate, a plurality of light sensing devices, a plurality of transistors and a plurality of color-filtering film layers. The substrate has a pixel array region comprising a plurality of pixels. Each pixel has a light sensing region and an active device region. The pixels are isolated from one another by isolation structures and the light sensing regions have different sizes. The light sensing devices are defined separately within the respective light sensing regions. The transistors are disposed within the respective active device region. The color-filtering film layers are disposed separately above the pixels to form a color-filtering array.
Abstract:
A method for forming microlenses of different curvatures is described, wherein a transparent photosensitive layer is formed on a substrate having a planar upper surface. A photomask is used to pattern the photosensitive layer, wherein the photomask has at least two patterns of different transparencies thereon such that at least two islands of different thicknesses are defined from the photosensitive layer. Then, the at least two islands are heated and softened to form at least two microlenses of different curvatures.
Abstract:
A method for forming microlenses of different curvatures is described, wherein a substrate having at least a first and a second areas different in height is provided. A transparent photosensitive layer having a planar surface is formed on the substrate and then patterned into at least two islands of different thicknesses respectively over the first area and the second area. The at least two islands are heated and softened to form at least two microlenses of different curvatures respectively over the first area and the second area, wherein the higher an area is, the smaller the curvature of the corresponding microlens is.
Abstract:
A method of fabricating an image sensor device is disclosed. In the method, a substrate having a plurality of trenches therein is provided. A first anti-reflective layer is formed on the surfaces of the trenches. An insulating layer is filled in the trenches for forming a plurality of shallow trench isolation regions. At least one photo sensitive region is formed within the substrate between neighboring shallow trench isolation regions. A second anti-reflective layer is formed at least covering the photo sensitive region. Because the first anti-reflective layer is formed on the surfaces of the trenches, and the second anti-reflective layer is formed on the photo sensitive region, the sensitivity of the image sensor device is improved.
Abstract:
A backside illuminated (BSI) image sensor including a substrate, a plurality of photosensitive regions, a back-end-of-line (BEOL), a pad, a color filter array, a plurality of micro-lenses and a protection layer is provided. The substrate has a first surface and a second surface. The substrate has a pad opening therein through the first surface and the second surface. The photosensitive regions are disposed in the substrate. The BEOL is disposed on the first surface of the substrate. The pad is disposed in the BEOL and exposed by the pad opening. The color filter array is disposed on the second surface of the substrate. The micro-lenses are disposed on the color filter array. The protection layer at least covers the top corner and the sidewall of the pad opening.
Abstract:
An image sensor, in which, a planarized layer is formed on a semiconductor substrate including a pixel array region, an optical black region, and a logic region to cover a photo sensing unit array in the pixel array region, a patterned metal layer is formed on the planarized layer corresponding to the pixel array region and the logic region, but not the optical black region. An optical black layer is formed in the optical black region after a passivation layer is formed and before a color filter array is formed at a temperature less than about 400° C., and preferably contains metal material.