Abstract:
The method of bonding flying leads is capable of efficiently supersonic-bonding the flying leads to pads of a board and improving bonding reliability therebetween. The method comprises the steps of: mechanically processing the board so as to form projections, which act as margins for deformation, in boding faces of the pads, on each of which the flying lead will be bonded, positioning the flying leads to correspond to the pads; and applying supersonic vibrations to a bonding tool so as to deform and crush the projections, whereby the flying leads are respectively bonded to the pads.
Abstract:
A method of bonding flying leads produces reliable bonds between the flying leads and substrate pads and can efficiently bond a plurality of flying leads and a plurality of substrate pads using a bonding tool. Flying leads are respectively aligned with a plurality of substrate pads disposed in parallel and a bonding tool applies ultrasonic vibration to the flying leads to bond the respective substrate pads and the flying leads. Bonding is carried out using a bonding tool in which at least one contact member that contacts the flying leads and applies the ultrasonic vibration thereto is rotatably supported. The bonding tool is moved in a direction so as to cross the flying leads disposed in parallel with the at least one contact member rolling while in contact with the flying leads, and the ultrasonic vibration is applied from the at least one contact member to the flying leads to ultrasonically bond the respective flying leads to the substrate pads.
Abstract:
A method of flip-chip mounting can reliably and stably mount a semiconductor chip to a mounting substrate while avoiding problems such as damage to the semiconductor chip due to a difference in thermal expansion coefficients between the semiconductor chip and the mounting substrate. The method of flip-chip mounting a semiconductor chip supports a mounting substrate on a stage in a state where a resin material has been supplied onto a chip mounting surface of the mounting substrate and presses the semiconductor chip toward the mounting substrate using a pressure/heat applying head to bond the semiconductor chip to the mounting substrate and thermally harden the resin material. A concave part is provided in a support surface of the stage that supports the semiconductor chip, and the semiconductor chip is bonded to the mounting substrate by pressing the semiconductor chip toward the mounting substrate using the pressure/heat applying head in a state where the mounting substrate is bent toward the concave part.
Abstract:
The method of bonding flying leads is capable of efficiently supersonic-bonding the flying leads to pads of a board and improving bonding reliability therebetween. The method comprises the steps of: positioning the flying leads to correspond to the pads arranged parallel; and applying supersonic vibrations to a bonding tool so as to respectively bond the flying leads to the pads. And widths of the flying leads are wider than those of the pads, and supersonic vibrations are applied to the bonding tool, which is pressing the flying leads onto the pads, so that the flying leads are respectively supersonic-bonded to the pads.
Abstract:
A method of bonding flying leads produces reliable bonds between the flying leads and substrate pads and can efficiently bond a plurality of flying leads and a plurality of substrate pads using a bonding tool. Flying leads are respectively aligned with a plurality of substrate pads disposed in parallel and a bonding tool applies ultrasonic vibration to the flying leads to bond the respective substrate pads and the flying leads. Bonding is carried out using a bonding tool in which (at least one contact member) a plurality of contact members that contact(s) the flying leads and apply (applies) the ultrasonic vibration thereto are (is) rotatably supported. The bonding tool is moved in a direction so as to cross the flying leads disposed in parallel with the plurality of contact members (at least one contact member) rolling while in contact with the flying leads, and the ultrasonic vibration is applied from the plurality of contact members (at least one contact member) to the flying leads to ultrasonically bond the respective flying leads to the substrate pads.
Abstract:
A method of flip-chip mounting can reliably and stably mount a semiconductor chip to a mounting substrate while avoiding problems such as damage to the semiconductor chip due to a difference in thermal expansion coefficients between the semiconductor chip and the mounting substrate. The method of flip-chip mounting a semiconductor chip supports a mounting substrate on a stage in a state where a resin material has been supplied onto a chip mounting surface of the mounting substrate and presses the semiconductor chip toward the mounting substrate using a pressure/heat applying head to bond the semiconductor chip to the mounting substrate and thermally harden the resin material. A concave part is provided in a support surface of the stage that supports the semiconductor chip, and the semiconductor chip is bonded to the mounting substrate by pressing the semiconductor chip toward the mounting substrate using the pressure/heat applying head in a state where the mounting substrate is bent toward the concave part.
Abstract:
The method of bonding flying leads is capable of efficiently supersonic-bonding the flying leads to pads of a board and improving bonding reliability therebetween. The method comprises the steps of: mechanically processing the board so as to form projections, which act as margins for deformation, in boding faces of the pads, on each of which the flying lead will be bonded, positioning the flying leads to correspond to the pads; and applying supersonic vibrations to a bonding tool so as to deform and crush the projections, whereby the flying leads are respectively bonded to the pads.
Abstract:
A compression-bonding apparatus includes a support stage and a pressing tool. The pressing tool includes a pressing stage, an elastic member and a plurality of bonding heads. The elastic member is held by the pressing stage. The plurality of bonding heads includes an upper surface attached to the elastic member and a lower surface facing an upper surface of the support stage.
Abstract:
An electronic component includes a package substrate, a plurality of conductive pads, an insulating material and a semiconductor device. The plurality of conductive pads is disposed on the package substrate. The insulating material is disposed between the plurality of conductive pads. The insulating material includes a top surface located on an identical plane to an upper surface of the plurality of conductive pads. The semiconductor device includes a conductive bump aligned on a corresponding conductive pad of the plurality of conductive pads.
Abstract:
A method of flip-chip mounting a semiconductor chip can carry out bonding at normal temperature and improves the positional accuracy of bonding. The method of flip-chip bonding a semiconductor chip 52 includes a step of providing a hardening trigger that is not heat to insulating adhesive 51 either before the semiconductor chip 52 is mounted on the substrate 50 or during bonding; and a step of bonding the bumps of the semiconductor chip to the pads of the substrate 50 by pressure welding or metal combining while hardening of the insulating adhesive 51 is progressing due to provision of the hardening trigger.