摘要:
As a variation of the non-orthogonal filter, a phasor estimate is computed by using an N-point window. An aspect of the sub-window cosine filter is to repeat the basic cosine filter for only selected points of the window. In the end, a least-squares fit is used to obtain an estimate for the phasors components. Previous cosine techniques use a data window whose length is greater than 1 cycle while the present invention requires only 1 cycle.
摘要:
An accurate impedance measurement method for a power system transmission line is disclosed for improving various protection functions, i.e., distance protection and/or fault location estimation. The method is less sensitive to harmonics and other transient problems introduced to power systems by series capacitance and the like, and is easily incorporated into existing protective relays. In the method, a number (n) of current and voltage samples (Ik, Vk) representative of values of current and voltage waveforms are measured, respectively, at successive instants of time on a conductor in a power system. The number n is an integer greater than I and the index k takes on values of 1 to n. Resistance (R) and inductance (L) values are computed in accordance with an equation in which R and L are related to sums of differences in values of successive current and voltage samples. A prescribed power system function is then performed based on the computed R and L values.
摘要:
An improved high impedance fault (HIF) detection system comprises an analyzer located at a circuit breaker or substation with feeders, wherein the analyzer analyzes current and/or voltage waveforms to detect a HIF on the feeder or on one of a plurality of laterals coupled to the feeder; a plurality of remote outage detectors located respectively at corresponding customer sites, each remote outage detector including a mechanism to detect a loss of potential or power at the corresponding site; and a computer in communication with the analyzer and the remote outage detectors.
摘要:
A new method of compensating for errors in phasor estimation due to oscillations caused by discrete fourier transforms used to estimate signal frequency is provided. The method uses a variable N-point DFT to compute one or more phasors based on data acquired from one or more sampled signals. At each sampling interval the change in phasor angle between the current sampling interval and the previous sampling interval is determined and used to estimate the instantaneous frequency of the signal. A non-oscillating phasor indicative of the instantaneous magnitude, angular frequency, and phase angle of the signal is generated based on the instantaneous frequency estimate. Instantaneous frequencies are averaged over a cycle of the signal to generate an average cycle frequency. In addition, a number of discrete frequencies and corresponding DFT windows based on a fixed sampling rate and a predetermined fundamental frequency of the signal are defined and used in estimating the instantaneous frequency. The DFT window is adjusted by setting it equal to the DFT window corresponding to the discrete frequency closest to the average cycle frequency. A generator protection system analyzing voltage and current signals output from a generator is also provided. The voltage and current signals are monitored by respective voltage and current sensors to produce a plurality of signals representative of voltage and current characteristics of the generator. The system comprises components for receiving and sampling signal input, and for processing the samples according to the inventive method.
摘要:
A reach-measurement method is used in connection with a series-compensated line of a power system. The series-compensated line includes an installed series capacitance having a bus side and a line side, and a non-linear protection device parallel to the installed series capacitance. The series-compensated line has a line current, a bus side voltage, and a line side voltage. The series capacitance and the non-linear protection device have a capacitance voltage thereacross equal to the bus side voltage minus the line side voltage. In the method, a number (n) of line current samples are measured, where such samples are representative of values of a line current waveform at successive instants of time on the series-compensated line. Capacitance voltage values are computed based on the measured line current samples in accordance with an equation which takes into account the non-linear protection device parallel to the installed series capacitance. A prescribed power system function is then performed based on the computed capacitance voltage values.
摘要:
An electrical power system includes a transmission line for transmitting electrical power, series capacitance compensation series-coupled to the transmission line adjacent one end thereof, where the series compensation includes a capacitance having a value (−j XCAP), and a protective relay at the one end of the transmission line for monitoring line voltages and line currents on the transmission line. Upon sensing a fault, an impedance Z of the line is calculated based on the monitored line voltages and line currents. The calculated impedance Z is adjusted according to the value of the capacitance of the series compensation (−j XCAP) to result in a modified impedance ZMOD, and the phasor angle Of ZMOD is examined to determine the direction of the sensed fault. The fault is in a first direction if the phasor angle is between X and X+180 degrees and is in a second direction opposite the first direction if the phasor angle is between X+180 and X+360 degrees.
摘要:
A high sample rate cosine filter eliminates DC components by summing them such that they sum to zero. A non-orthogonal cosine filter is also provided. When the cosine filter is applied for N=4 samples per cycle, the samples are separated by 90 degrees. However, at higher sampling rates, it is not necessary to wait for 90 degrees to estimate the phasor value. Non-orthogonal components are used to estimate the phasor value. The time delay associated with the cosine filter is reduced in the process.
摘要:
An electric generator (1) includes a casing (2) that envelops a stator (3) and a rotor (4). The casing (2) has an aperture (5) through which the generator casing inside (7) is inspectable during generator operation. A method includes inspecting during generator operation, through the aperture (5) of the casing (2), the casing inside (7).
摘要:
The disclosure relates to a method of detecting and managing voltage instability in power systems operations. The disclosed method identifies and follows Thevenin and load impedance values as they fluctuate in a power system using synchrophasor measurements. The values are recursively estimated and entered into calculations to identify stability margins through a simple P-Q plane representation to determine if load shedding is necessary.
摘要:
A ground fault location system is used in a multi-phase ungrounded or high-impedance grounded power network. A signal generator is coupled to the network at a first location and generates for each network phase an individual non-DC voltage signal between such phase and ground. A ground fault detector is coupled to the network at a second location and has a summing device and an annunciator. The summing device is coupled to all of the phases of the network at such second location, sums any current passing therethrough, and produces a sum signal. The annunciator receives the sum signal and provides an indication when such signal is non-zero. Each phase of the network at the second location has a distribution current passing therethrough, the sum thereof normally being substantially zero and resulting in a substantially zero sum signal and the lack of an indication from the annunciator based on such distribution currents. When the second location is on a path between the first location and a ground fault, the individual voltage signal on at least one of the phases generates a fault current thereon through such path and results in a non-zero sum signal and an indication from the annunciator. When the second location is not on such path, none of the individual voltage signals generates a fault current on any phase through such path, resulting in a substantially zero sum signal and the lack of an indication from the annunciator.