摘要:
Compounds and methods for sorbing organosulfur compounds from fluids are provided. Generally, compounds according to the present invention comprise mesoporous, nanocrystalline metal oxides. Preferred metal oxide compounds either exhibit soft Lewis acid properties or are impregnated with a material exhibiting soft Lewis acid properties. Methods according to the invention comprise contacting a fluid containing organosulfur contaminants with a mesoporous, nanocrystalline metal oxide. In a preferred embodiment, nanocrystalline metal oxide particles are formed into pellets (14) and placed inside a fuel filter housing (12) for removing organosulfur contaminants from a hydrocarbon fuel stream.
摘要:
Compounds and methods for sorbing organosulfur compounds from fluids are provided. Generally, compounds according to the present invention comprise mesoporous, nanocrystalline metal oxides. Preferred metal oxide compounds either exhibit soft Lewis acid properties or are impregnated with a material exhibiting soft Lewis acid properties. Methods according to the invention comprise contacting a fluid containing organosulfur contaminants with a mesoporous, nanocrystalline metal oxide. In a preferred embodiment, nanocrystalline metal oxide particles are formed into pellets (14) and placed inside a fuel filter housing (12) for removing organosulfur contaminants from a hydrocarbon fuel stream.
摘要:
A fluid delivery system (20) for an automated processor (A) includes spray nozzles (102, 104, 106, 108, 110) for sequentially spraying washing, microbial decontaminant and rinsing solutions over a lumened device (B), such as an endoscope. The fluid delivery system also includes connection ports (150, 152, 154) for connecting with internal passages (187) of the device to deliver the washing and microbial decontaminant solutions thereto. A removable rack (21), specially configured for the particular device, positions the device within a chamber (12). The spray nozzles are located on rear and side walls (114, 116, 118) and on a door (18) of the chamber, such that the device is impinged with spray from all directions. Sets (102, 104) of the spray nozzles are pulsed in sequence so that the spray jets (122) do not cancel each other out. Leaking connectors (184) connect the automated processor connection ports with inlet ports (196) of the device and allow a portion of the cleaning, decontaminant, and rinsing solutions to leak from each inlet port. A computer control system (80) controls cleaning, decontamination, rinsing, and drying stages of a cycle, which are all carried out within the chamber, obviating the need for human contact with the device during processing.
摘要:
Improved area decontamination products and methods of use thereof are provided which include reactive nanoparticles (e.g., metal oxides, hydroxides and mixtures thereof) with one or more biocides and a liquid carrier for the nanoparticles and biocide(s). The products may be formulated for area decontamination as sprays, fogs, aerosols, pastes, gels, wipes or foams, and the presence of reactive nanoparticles enhances the neutralization of undesirable chemical or biological compounds or agents. The nanoparticles may be from the group consisting of the alkali metal, alkaline earth metal, transition metal, actinide and lanthanide oxides and hydroxides and mixtures thereof. In preferred forms, nanocrystalline oxides and hydroxides of Al, Ca, Ce, Mg, Sr, Sn, Ti and Zn are employed having single crystallite sizes of up to about 20 nm and surface areas of at least about 15 m2/g.
摘要:
An instrument (28) or other item to be sterilized is supported on a hanger (26) in a decontamination chamber (10). A container such as a sleeve (92), is supported at adjacent ends between supporting rings (90) such that the container surrounds and is displaced from the instrument. A pump (40) recirculates a sterilant or other antimicrobial solution that collects in a lower drain (48) and a reservoir (50) through spray nozzles (70, 96) and connectors (44) which are connected to interior passages of the instrument. In this manner, the internal passages of the instrument are sterilized by the flowing liquid and exterior surfaces are sterilized by sterilant solution mist which condenses on and coats the exterior surface. After the instrument is sterilized, a sterile rinse is sprayed on the instrument and interior of the container. The container and instrument are removed as a unit and the container is closed at its ends to prevent the instrument from becoming microbially contaminated from the ambient air. The instrument may be dried passively by a microbe blocking filter (98) in the container or by using a fan (80) to pump drying air longitudinally through the container.
摘要:
Cooked food products, such as cooked meats, and poultry, are treated with a decontaminant solution to remove surface microorganism contamination. The decontaminant solution contains peracetic acid at a concentration of from about 100 to 4000 ppm and has broad spectrum activity against a variety of pathogenic and spoilage microorganisms, such as Listeria monocytogenes.
摘要:
A fluid delivery system (26) for an automated processor (A) delivers washing, microbial decontaminant, and rinse fluids to spray nozzles (102, 104, 106, 108, 110) in a chamber (12) for sequentially spraying the fluids over a lumened device (B), such as an endoscope. The fluid delivery system also delivers the fluids to connection ports (150, 152, 154) which connect with internal passages (187) of the device for delivering the fluids thereto. Leaking connectors (184) connect the automated processor connection ports with inlet ports (196) of the device and allow a portion of the washing, decontaminant, and rinsing solutions to leak from each inlet port. A computer control system (80) controls cleaning, decontamination, rinsing, and drying stages of a cycle, which are all carried out within the chamber, obviating the need for human contact with the device during processing. A door locking and latching mechanism (90) ensures that the door remains locked during the washing, decontamination, and rinse cycle to avoid accidental injury to an operator from strong chemicals used in the system.
摘要:
A method of washing, microbially decontaminating, and rinsing of a lumened device (B), such as an endoscope includes positioning the device in a chamber (12) of an automated processor (A). Spray nozzles (102, 104, 106, 108, 110) within the chamber sequentially spray washing, microbial decontaminant, and rinse fluids over the device. Fluid connection ports (150, 152, 154) connect with internal passages (187) of the device for delivering the fluids thereto. Leaking connectors (184) connect the automated processor connection ports with inlet ports (196) of the device and allow a portion of the washing, decontaminant, and rinse solutions to leak from each inlet port. A computer control system (80) controls leak testing, cleaning, decontamination, rinsing, and drying stages of a cycle, which are all carried out within the chamber, obviating the need for human contact with the device during processing. A door locking and latching mechanism (90) ensures that the door remains locked during the washing, decontamination, and rinse cycle to avoid accidental injury to an operator from strong chemicals used in the system.
摘要:
The body portion (A) of a small portable sterilizer has a face panel (46) against which a door (B) is selectively closed. The face panel defines an access opening for a sterilization chamber (10) which receives a cassette (C), an access opening for an anti-microbial concentrate chamber (20) which receives a powdered or other sterilant concentrate, and an outlet opening (50) from a microbe filter which filters microbes from incoming rinse water. The face plate and the door define fluid flow channels (48, 52) therebetween for selectively directing sterilant solutions and rinse solutions among the anti-microbial concentrate chamber, the sterilization chamber, and the microbial filter. The cassette is configured to assure that it is inserted into the sterilization chamber with a unique orientation such that its fluid inlet apertures (114) and outlet apertures (124) are at preselected locations. The door includes generally U-shaped projections (116) which abut an outer surface of the cassette in the sterilization chamber partially surrounding the fluid inlet apertures. The U-shaped projections assure that the cassette is seated in the sterilization chamber and provide a well which directs the circulating fluids into the cassette inlet apertures. A pair of gaskets (56, 86) surround the active portion of the face panel. A vacuum pump (90) selectively draws a vacuum in an annular region (88) between the gaskets, which vacuum locks the door against the face plate in a sealed, closed position. To assure a fluid tight seal, the gaskets are O-rings which are pressed by the vacuum into V-shaped grooves (82, 84).