Abstract:
A multilayer positive temperature coefficient thermistor that has a BaTiO3-based ceramic material contained as a primary component in semiconductor ceramic layers, the ratio of the Ba site to the Ti site is in the range of 0.998 to 1.006, and at least one element selected from the group consisting of La, Ce, Pr, Nd, and Pm is contained as a semiconductor dopant. In this multilayer positive temperature coefficient thermistor, a thickness d of internal electrodes layer and a thickness D of the semiconductor ceramic layers satisfy d≧0.6 μm and d/D
Abstract:
A method of producing a laminated PTC thermistor involves alternately laminating electroconductive pastes to form internal electrodes and ceramic green sheets to form semiconductor ceramic layers with a positive resistance-temperature characteristic to form a laminate, firing the laminate to form a ceramic piece, and forming external electrodes on both of the end-faces of the ceramic piece, and heat-treating the ceramic piece having the external electrodes formed thereon at a temperature between about 60° C. and 200° C.
Abstract:
A multilayer positive temperature coefficient thermistor that has semiconductor ceramic layers containing a BaTiO3-based ceramic material as a primary component, and at least one element selected from the group consisting of Eu, Gd, Tb, Dy, Y, Ho, Er, and Tm as a semiconductor dopant in the range of 0.1 to 0.5 molar parts with respect to 100 molar parts of Ti. The ratio of the Ba site to the Ti site is in the range of 0.998 to 1.006. Accordingly, even when the semiconductor ceramic layers have a low actual-measured sintered density in the range of 65% to 90% of a theoretical sintered density, a multilayer positive temperature coefficient thermistor having a sufficiently high rate of resistance change and a high rising coefficient of resistance at the Curie temperature or more can be realized.
Abstract:
A multilayer positive temperature coefficient thermistor includes a ceramic body having semiconductor ceramic layers and internal electrodes, the semiconductor ceramic layers being mainly composed of BaTiO3 and containing semiconductor-forming agents, the semiconductor ceramic layers and the internal electrodes being alternately stacked, and the outermost layers of the ceramic body being formed of the semiconductor ceramic layers. The outermost layers serve as protective layers. The semiconductor ceramic layers arranged between the internal electrodes 4a and 4d serve as effective layers. The protective layers contain a semiconductor-forming agent having a larger ionic radius than that of a semiconductor-forming agent contained in the effective layers. The protective layers have a lower porosity than that of the effective layers.
Abstract:
A multilayer positive temperature coefficient thermistor that has a BaTiO3-based ceramic material contained as a primary component in semiconductor ceramic layers, the ratio of the Ba site to the Ti site is in the range of 0.998 to 1.006, and at least one element selected from the group consisting of La, Ce, Pr, Nd, and Pm is contained as a semiconductor dopant. In this multilayer positive temperature coefficient thermistor, a thickness d of internal electrodes layer and a thickness D of the semiconductor ceramic layers satisfy d≧0.6 μm and d/D
Abstract:
A multilayer positive temperature coefficient thermistor includes a ceramic body having semiconductor ceramic layers and internal electrodes, the semiconductor ceramic layers being mainly composed of BaTiO3 and containing semiconductor-forming agents, the semiconductor ceramic layers and the internal electrodes being alternately stacked, and the outermost layers of the ceramic body being formed of the semiconductor ceramic layers. The outermost layers serve as protective layers. The semiconductor ceramic layers arranged between the internal electrodes 4a and 4d serve as effective layers. The protective layers contain a semiconductor-forming agent having a larger ionic radius than that of a semiconductor-forming agent contained in the effective layers. The protective layers have a lower porosity than that of the effective layers. Preferably, glass films are formed in pores in surfaces of the protective layers, and the protective layers have a porosity of 10% or less. In this case, it is possible to produce a multilayer positive temperature coefficient thermistor that effectively prevents the penetration of flux into the semiconductor ceramic layers and ensures a desired rate of resistance change without delamination.
Abstract:
A multilayer positive temperature coefficient thermistor that has semiconductor ceramic layers containing a BaTiO3-based ceramic material as a primary component, and at least one element selected from the group consisting of Eu, Gd, Tb, Dy, Y, Ho, Er, and Tm as a semiconductor dopant in the range of 0.1 to 0.5 molar parts with respect to 100 molar parts of Ti. The ratio of the Ba site to the Ti site is in the range of 0.998 to 1.006. Accordingly, even when the semiconductor ceramic layers have a low actual-measured sintered density in the range of 65% to 90 % of a theoretical sintered density, a multilayer positive temperature coefficient thermistor having a sufficiently high rate of resistance change and a high rising coefficient of resistance at the Curie temperature or more can be realized.
Abstract:
A semiconductor ceramic and a positive-coefficient characteristic thermistor are provided which have a stable PTC characteristic, a high double point, and a wide operating temperature range. The semiconductor ceramic contains, as a main component, a barium titanate-based composition having a perovskite structure expressed by a general formula AmBO3. Out of 100 mol % of the Ti, an amount in a range of 0.05 mol % or more to 0.3 mol % or less of Ti is replaced with W as a semiconductor forming agent, the ratio m of A sites mainly to B sites is 0.99≦m≦1.002, and an actually-measured sintered density is 70% or more and 90% or less of the theoretical sintered density. In the positive-coefficient characteristic thermistor, a component body is formed of the semiconductor ceramic.
Abstract:
A semiconductor ceramic includes a BamTiO3-based composition, as a main component, having a perovskite structure represented by general formula AmBO3. The molar ratio m between the A site and the B site satisfies 1.001≦m≦1.01. Part of Ba constituting the A site is replaced with Bi, Ca, a rare-earth element, and Na. The molar content of the Ca when the total number of moles of the elements constituting the A site is 1 mole is 0.05 to 0.20 (preferably 0.125 to 0.175). A PTC thermistor includes a component body formed of the semiconductor ceramic. Accordingly, there is provided a lead-free semiconductor ceramic that substantially does not contain lead and that has desired PTC characteristics and high reliability.
Abstract:
A semiconductor ceramic includes a BamTiO3-based composition, as a main component, having a perovskite structure represented by general formula AmBO3. Part of Ba constituting an A site is replaced with at least an alkali metal element, Bi, and a rare-earth element, and the molar ratio m between the A site and a B site is 0.990≦m≦0.999 (preferably 0.990≦m≦0.995). Preferably, part of the Ba is replaced with Ca, and the content of the Ca when the total number of moles of the elements constituting the A site is 1 mole is 0.042 to 0.20 (preferably 0.125 to 0.175) on a molar basis. A PTC thermistor includes a component body formed of the semiconductor ceramic. Accordingly, there are provided satisfactory rise characteristics even if an alkali metal element is present.