摘要:
A semiconductor laser device includes a substrate having one of p- and n-conductivity types, and a current constrictive layer formed on a surface of the substrate and having the other type of conductivity. The current constrictive layer has a through-channel extending to the surface of the substrate for defining a current path in a direction perpendicular to the surface of the substrate. The through-channel is of a belt-like pattern extending in a direction perpendicular to end surfaces of the substrate. A third cladding layer having the one type of conductivity is filled in the through-channel, a surface of the third cladding layer being flush with a surface of a current constrictive layer. A first cladding layer, an active layer, and a second cladding layer which constitute a double heterostructure are formed over the third cladding layer and current constrictive layer.
摘要:
A semiconductor laser device includes a substrate having one of p- and n-conductivity types, and a current constrictive layer formed on a surface of the substrate and having the other type of conductivity. The current constrictive layer has a through-channel extending to the surface of the substrate for defining a current path in a direction perpendicular to the surface of the substrate. The through-channel is of a belt-like pattern extending in a direction perpendicular to end surfaces of the substrate. A third cladding layer having the one type of conductivity is filled in the through-channel, a surface of the third cladding layer being flush with a surface of a current constrictive layer. A first cladding layer, an active layer, and a second cladding layer which constitute a double heterostructure are formed over the third cladding layer and current constrictive layer.
摘要:
A semiconductor laser device is provided which is constituted by semiconductor materials so as to emit laser light from a cavity end facet, the laser light being excited in a waveguide within an active layer sandwiched between a pair of cladding layers, wherein a window layer made of a semiconductor material having a band gap greater than that of the active layer is formed on the cavity end facet from which the laser light is emitted, so as to have a thickness sufficient to prevent local generation of crystal defects by lattice mismatching between the semiconductor material of the window layer and the semiconductor materials at the cavity end facet. There is also provided a method for producing such a semiconductor laser device with high efficiency.
摘要:
A semiconductor light emitting device which allows part of an active layer to generate light by supplying current to the part of the active layer is disclosed. The semiconductor light emitting device includes: a semiconductor substrate having upper and lower surfaces, the upper surface having a stepped portion, the stepped portion dividing the upper surface into at least a first area and a second area; a current confining layer, formed on the upper surface of the substrate, the current confining layer being discontinuous at the stepped portion, the current flowing through an area between the first area and the second area of the substrate; a multilayer structure formed on the current confining layer, the multilayer structure including the active layer; a first electrode which covers only part of an upper surface of the multilayer structure; and a second electrode formed over the lower surface of the substrate. In the semiconductor light emitting device, the light generated from part of the active layer is extracted to the outside through a portion of the upper surface of the multilayer structure which is not covered with the first electrode.
摘要:
A method for producing a semiconductor laser device includes the steps of: forming window layers on either one of a top surface of an internal structure or a reverse surface of a substrate and on light-emitting end facets of the internal structure; forming a reflection film on the light-emitting end facets; removing the window layer formed on either one of the top surface or the reverse surface by using an etchant which hardly etches the reflection film; and forming electrodes on the surface from which the window layer is removed by etching and on the other surface. Another method for producing a semiconductor laser device includes the steps of: forming window layers on light-emitting end facets of the bars; inserting the bars into an apparatus having openings for forming electrodes and a supporting portion for preventing a positional shift between the bars and the openings, and forming the electrodes on the top surfaces and the reverse surfaces of the bars; and cutting the bars into the chips.
摘要:
A surface electrode on a surface of a LED has a pad, and further, at least first-order branches linearly extending from the pad, second-order branches diverged and linearly extending from the first-order branches, and third-order branches diverged and linearly extending from the second-order branches. The pad out of the surface electrode is not in electrical contact with a underlying semiconductor layer, whereas the surface electrode and the semiconductor layer are in electrical contact with each other at ends of the highest-order branches. Also, the semiconductor layer is provided along a pattern of the surface electrode in a mesa shape. Thus, ineffective light emission underneath the surface electrode is relatively reduced so that external quantum efficiency can be improved, and moreover even shorter-wavelength light can be allowed to go out at high efficiency by omitting a current diffusion layer.
摘要:
Ultrasonic treatment equipment is provided which repeats therapeutic ultrasound exposure while measuring a degree of vessel constriction on a therapeutic ultrasound exposure basis. This equipment includes: a therapeutic ultrasonic transducer 2 which exposes a blood vessel of an affected part to a focused therapeutic ultrasonic wave for a specified period of exposure time; an imaging ultrasonic probe 3 which images an ultrasound tomographic image of the affected part; a display unit 24 which displays the ultrasound tomographic image; means 21 for detecting a blood flow signal from a signal received by the imaging ultrasonic probe and determining the blood flow velocity of the blood vessels of the affected part; means 21 for calculating a rate of change in blood flow velocity during the exposure to the therapeutic ultrasonic wave or before and after the exposure to the therapeutic ultrasonic wave; and means 23 for controlling exposure conditions of the therapeutic ultrasonic wave on the basis of the rate of change in blood flow velocity, and thereby controlling the therapeutic ultrasonic transducer.
摘要:
A semiconductor light-emitting device includes: a semiconductor substrate; a light-emitting layer formed on the semiconductor substrate; a current-blocking layer formed on a part of the light-emitting layer for restricting light-emission; a current-spreading layer formed on the current-blocking layer and the other part of the light-emitting layer; a front electrode formed on the current-spreading layer; and a rear electrode formed on a rear side of the semiconductor substrate. The current-blocking layer is composed of a central region and an outer region which surrounds the central region via a part of the current-spreading layer, so that a light-emitting region that appears on a front surface of the device has an annular shape. The front electrode and the central region of the current-blocking layer are opposed to each other.
摘要:
In a semiconductor light-emitting device, on an n-GaAs substrate are stacked an n-GaAs buffer layer, an n-cladding layer, an undoped active layer, a p-cladding layer, a p-intermediate band gap layer and a p-current diffusion layer. Further, a first electrode is formed under the n-GaAs substrate, and a second electrode is formed on the grown-layer side. In this process, a region of the p-intermediate band gap layer just under the second electrode is removed, the p-current diffusion layer is stacked in the removal region on the p-cladding layer, and a junction plane of the p-current diffusion layer and the p-cladding layer becomes high in resistance due to an energy band structure of type II. This semiconductor light-emitting device is capable of reducing ineffective currents with a simple construction and taking out light effectively to outside, thus enhancing the emission intensity.
摘要:
There is provided a semiconductor light emitting device having improved adhesion of an electrode by reducing defects in a crystal surface. An n-type AlGaInP lower clad layer 12, an AlGaInP active layer 13, a p-type AlGaInP upper clad layer 14, a p-type AlGaInP intermediate layer 15 whose lattice matching rate &Dgr;a/a with GaAs is −3.3%, a p-type AlGaInP current diffusion layer 16 and a p-type electrode 17 are laminated on an n-type GaAs substrate 11 and an n-type electrode 18 is provided on the n-type GaAs substrate 11. Thus, the number of crystal defects in the crystal surface can be reduced to 20 or less per one LED by setting the value of the lattice matching rate &Dgr;a/a of the intermediate layer 15 to be −3.3%, which is lower than −2.5%. As a result, adhesion of the p-type electrode 17 formed on the current diffusion layer 16 is improved and thereby the yield of LED can be enhanced.