Abstract:
A photoelectric conversion element of an embodiment includes: a back electrode; a heterojunction-type light absorbing layer on the back electrode, containing Cu, selected from Al, In and Ga, and selected from Se and S, and having a chalcopyrite structure; a transparent electrode on the light absorbing layer, wherein aback electrode side-part of the light absorbing layer is of p-type, and a transparent electrode-side part of the light absorbing layer is of n-type, the light absorbing layer has a part with an average crystal grain size of 1,000 nm to 3,000 nm in the vicinity of the back electrode, and the light absorbing layer has apart with an average crystal grain size of at most 500 nm in the vicinity of the transparent electrode or the light absorbing layer has an amorphous part in the vicinity of the transparent electrode.
Abstract:
A solar cell of an embodiment has a first solar cell, a second solar cell, and an intermediate layer between the first and second solar cells. The first solar cell has a Si layer as a light absorbing layer. The second solar cell has as a light absorbing layer one of a group I-III-VI2 compound layer and a group I2-II-IV-VI4 compound layer. The intermediate layer has an n+-type Si sublayer and at least one selected from a p+-type Si sublayer, a metal compound sublayer, and a graphene sublayer. The metal compound sublayer is represented by MX where M denotes at least one type of element selected from Nb, Mo, Pd, Ta, W, and Pt and X denotes at least one type of element selected from S, Se, and Te.
Abstract:
A photoelectric conversion element includes a photoelectric conversion layer, a transparent electrode, an intermediate layer, and a window layer. The photoelectric conversion layer includes a homojunction of a p-type compound semiconductor layer and an n-type compound semiconductor layer. The p-type and n-type compound semiconductors include group I-III-VI2 compound or group I2-II-IV-VI4 compound. The intermediate layer is provided between the n-type compound semiconductor layer and the transparent electrode. The intermediate layer is 1 nm to 10 nm in thickness. The window layer is provided between the intermediate layer and the transparent electrode.
Abstract:
A multi-junction solar cell of an embodiment includes a first solar cell including a first photoelectric conversion device, a second solar cell including a plurality of second photoelectric conversion devices connected in series and having a back contact, and an insulating layer between the first solar cell and the second solar cell. A device isolation region is provided between the second photoelectric conversion devices connected in series.
Abstract:
In accordance with one embodiment, there is provided a photovoltaic cell module including a substrate; a plurality of photovoltaic cells disposed via an individual gap on the substrate; and a transparent member disposed to cover the photovoltaic cells, and configured so that light incident on the transparent member passes through the transparent member and arrives at the photovoltaic cells, wherein the transparent member has a slit-shaped recess space at a position corresponding to the individual gap between the photovoltaic cells; and the photovoltaic cell module includes a photoelectric conversion rate improvement structure on a surface side of the transparent member, on which light is incident.
Abstract:
A solar cell of an embodiment has a first solar cell, a second solar cell, and an intermediate layer between the first and second solar cells. The first solar cell has a Si layer as a light absorbing layer. The second solar cell has as a light absorbing layer one of a group I-III-VI2 compound layer and a group I2-II-IV-VI4 compound layer. The intermediate layer has an n+-type Si sublayer and at least one selected from a p+-type Si sublayer, a metal compound sublayer, and a graphene sublayer. The metal compound sublayer is represented by MX where M denotes at least one type of element selected from Nb, Mo, Pd, Ta, W, and Pt and X denotes at least one type of element selected from S, Se, and Te.
Abstract:
An aspect of one embodiment, there is provided a photoelectric conversion element, including a first electrode having optical transparency, a second electrode, and an optical absorption layer provided between the first electrode and the second electrode, the optical absorption layer having a compound semiconductor constituted with a chalcopyrite structure or a stannite structure, the compound semiconductor having a first element of a Group 11 element and a second element of a Group 16 element and comprising a p-type portion and an n-type portion provided between the p-type portion and the first electrode, the n-type portion and the p-type portion jointly having a homo junction, wherein the n-type portion comprises a dopant which has a formal charge Vb being not less than 1.60 and not more than 2.83.
Abstract:
A photoelectric conversion element of an embodiment includes: a back electrode; a heterojunction-type light absorbing layer on the back electrode, containing Cu, selected from Al, In and Ga, and selected from Se and S, and having a chalcopyrite structure; a transparent electrode on the light absorbing layer, wherein aback electrode side-part of the light absorbing layer is of p-type, and a transparent electrode-side part of the light absorbing layer is of n-type, the light absorbing layer has a part with an average crystal grain size of 1,000 nm to 3,000 nm in the vicinity of the back electrode, and the light absorbing layer has apart with an average crystal grain size of at most 500 nm in the vicinity of the transparent electrode or the light absorbing layer has an amorphous part in the vicinity of the transparent electrode.
Abstract:
A photoelectric conversion element of an embodiment includes: a light absorbing layer containing Cu, at least one Group IIIb element selected from the group including Al, In and Ga, and S or Se, and having a chalcopyrite structure; and a buffer layer formed from Zn and O or S, in which the ratio S/(S+O) in the area extending in the buffer layer up to 10 nm from the interface between the light absorbing layer and the buffer layer, is equal to or greater than 0.7 and equal to or less than 1.0.
Abstract:
A photoelectric conversion element of an embodiment includes: a light absorbing layer containing copper (Cu), at least one Group IIIb element selected from the group including aluminum (Al), indium (In) and gallium (Ga), and sulfur (S) or selenium (Se), and having a chalcopyrite structure; and a buffer layer formed from zinc (Zn) and oxygen (O) or sulfur (S), wherein the molar ratio represented by S/(S+O) of the buffer layer is equal to or greater than 0.7 and equal to or less than 1.0, and the crystal grain size is equal to or greater than 10 nm and equal to or less than 100 nm.