Abstract:
The present invention relates to an electrochemical cell having a channel-type flow-electrode unit.The channel-type flow-electrode structure according to the present invention, which has at least two channel-type flow-electrode units, can significantly reduce manufacturing costs and installation space by reducing the number of parts while extending the electrode capacity to be suitable for large-scale plants for electricity generation, energy storage, desalination, etc. In addition, the channel-type flow-electrode structure can be applied not only to a capacitive flow-electrode device and/or a redox flow battery device, but also to all of the devices for electricity generation, energy storage, and desalination while moving ions or protons.
Abstract:
A method for preparing a carbon dioxide absorbent based on natural biomass, and a carbon dioxide absorbent based on natural biomass that is prepared by the method. The method utilizes alkali metal or alkaline earth metal components, such as Ca, Ma and K, inherent to a natural plant biomass material. The method can provide a carbon dioxide absorbent with improved performance in an environmentally friendly manner at greatly reduced cost.
Abstract:
A composite synthesis method and apparatus, a vaporizer for the composite synthesis apparatus, a vaporizer heater and a composite. In the composite synthesis apparatus using simultaneous vaporization, two or more vaporizers are heated by heaters such that samples vaporized by the vaporizers are supplied into a reactor to synthesize a composite. The apparatus and method may prepare multiple-metal or metal-carbon heterogeneous composites, and may be applied to various metal- and carbon-based adsorbents, absorbents, gas/liquid separation membranes and various catalyst processes. Further, the composite may be applied to various industrial fields through change in metal components or carbon structures.
Abstract:
The present subject matter provides a method of manufacturing an electrode for a fuel cell, in which nanocarbons are grown on the surface of a substrate for a fuel cell using a process of simultaneously gasifying a platinum precursor and a carbon precursor, and simultaneously core-shell-structured platinum-carbon composite catalyst particles are highly dispersed between nanocarbons The subject matter also provides an electrode for a fuel cell, manufactured by the method. This method is advantageous in that an electrode for a fuel cell having remarkably improved electrochemical performance and durability can be manufactured by a simple process.
Abstract:
The present subject matter provides a method of manufacturing an electrode for a fuel cell, in which nanocarbons are grown on the surface of a substrate for a fuel cell using a process of simultaneously gasifying a platinum precursor and a carbon precursor, and simultaneously core-shell-structured platinum-carbon composite catalyst particles are highly dispersed between nanocarbons The subject matter also provides an electrode for a fuel cell, manufactured by the method. This method is advantageous in that an electrode for a fuel cell having remarkably improved electrochemical performance and durability can be manufactured by a simple process.
Abstract:
A method of preparing a metal-carbon composite of a core-shell structure through simultaneous vaporization, in which a metal particle constitutes a core and carbon constitutes a shell, with the metal-carbon composite prepared in the form of powder and supported on a supporter, and a metal-carbon composite of a core-shell structure prepared by the same. In these methods, the metal-carbon composite of the core-shell structure is prepared through simultaneous vaporization of metal and carbon precursors and does not require separate post-processing. Further, in the metal-carbon composite of the core-shell structure prepared by these methods, a carbon shell covers a portion or the entirety of a surface of a metal core, whereby the metal particles can be prevented from suffering agglomeration, separation or corrosion when subjected to harsh process conditions at high temperatures for long durations under strong acid and alkali conditions, thereby providing high performance and high durability.
Abstract:
A method for preparing a carbon dioxide absorbent based on natural biomass, and a carbon dioxide absorbent based on natural biomass that is prepared by the method. The method utilizes alkali metal or alkaline earth metal components, such as Ca, Ma and K, inherent to a natural plant biomass material. The method can provide a carbon dioxide absorbent with improved performance in an environmentally friendly manner at greatly reduced cost.
Abstract:
Disclosed herein are porous graphene filters, each consisting of a carbon monoatomic layer having small holes formed therein during the graphene formation, a plurality of the porous graphene filters being used to selectively filter a specific material from a mixture of at least two different materials, a method for manufacturing the same, and a filtering apparatus using the same. The method comprises: separately forming a first graphene filter having a first hole of a first size and a second graphene filter having a second hole of a second size, during deposition of carbon atoms generated from a carbon source for formation of graphene, by substituting the carbon atoms, in part, with a substitution atom generated from a substitution source, the second size being larger than the first size; and arranging the first graphene filter and the second graphene filter in a filter body equipped with an inlet and an outlet.
Abstract:
Disclosed are a large-scale composite synthesis system, a reactor therefor, and a synthesis method using the same, wherein two or more different samples are vaporized in respective vaporizers, and are then fed into a reactor that has a relatively large transverse cross-sectional diameter compared to the connector for transporting the samples in a gas phase and is maintained at a temperature lower than that of the connector, thus producing a powder composite, the composite being synthesized while being electrostatically attached to an adherend surface.
Abstract:
Disclosed are a metal-carbon hybrid composite having a nitrogen-doped carbon surface and a method of manufacturing the same. More particularly, the present invention relates to a method of manufacturing a metal-carbon hybrid composite, wherein the surface of carbon for the metal-carbon hybrid composite may be doped with nitrogen in a single step using a co-vaporization process, and to a metal-carbon hybrid composite having a nitrogen-doped carbon surface manufactured by the method.