Abstract:
The present subject matter provides a method of manufacturing an electrode for a fuel cell, in which nanocarbons are grown on the surface of a substrate for a fuel cell using a process of simultaneously gasifying a platinum precursor and a carbon precursor, and simultaneously core-shell-structured platinum-carbon composite catalyst particles are highly dispersed between nanocarbons The subject matter also provides an electrode for a fuel cell, manufactured by the method. This method is advantageous in that an electrode for a fuel cell having remarkably improved electrochemical performance and durability can be manufactured by a simple process.
Abstract:
The present subject matter provides a method of manufacturing an electrode for a fuel cell, in which nanocarbons are grown on the surface of a substrate for a fuel cell using a process of simultaneously gasifying a platinum precursor and a carbon precursor, and simultaneously core-shell-structured platinum-carbon composite catalyst particles are highly dispersed between nanocarbons The subject matter also provides an electrode for a fuel cell, manufactured by the method. This method is advantageous in that an electrode for a fuel cell having remarkably improved electrochemical performance and durability can be manufactured by a simple process.