Abstract:
This invention relates to a method for gastric cancer diagnosis through the detection of glycan changes, and to a kit for gastric cancer diagnosis. More specifically, based on the fact that in gastric cancer patient-derived haptoglobin, there are changes in N-linked glycosylation of haptoglobin, which are detected through lectin and mass spectrometery, that is, an increase in fucosylation, increases or significant changes in specific glycan structures depending on the classification of antennary structures, or a remarkable decrease in a high mannose structure of the N-glycan as compared to normal persons, N-glycan structures identified using the changes in N-linked glycosylation of haptoglobin may be usefully used as a diagnosis marker in a method for gastric cancer diagnosis using lectin or mass spectrometry, and a kit for gastric cancer diagnosis.
Abstract:
The present invention relates to a method of diagnosing colorectal cancer by detection of glycan changes, and more particularly to a method of diagnosing colorectal cancer using mass spectrometry, in which, when specific glycan structures increase, decrease or significantly change due to a change in N-linked glycosylation of a colorectal cancer patient-derived glycoprotein, as detected by mass spectrometry, the glycan structures are selected as diagnostic markers.
Abstract:
Disclosed are a process for separating an electrode for membrane-electrode assemblies of fuel cells from the decal transfer film and an apparatus for separating the electrode. In particular, during the electrode separating process, only an electrode is separated from the decal transfer film on which the electrode is coated, without any damage, by a freezing method for freezing the specimen on the deionized water surface, and thus, wasting the expensive MEA is prevented. Thus, mechanical properties of the pristine electrode can be rapidly quantified in advance, and therefore, long term durability evaluation period during developing MEA having excellent durability is substantially reduced.
Abstract:
Disclosed are a process for separating an electrode for membrane-electrode assemblies of fuel cells from the decal transfer film and an apparatus for separating the electrode. In particular, during the electrode separating process, only an electrode is separated from the decal transfer film on which the electrode is coated, without any damage, by a freezing method for freezing the specimen on the deionized water surface, and thus, wasting the expensive MEA is prevented. Thus, mechanical properties of the pristine electrode can be rapidly quantified in advance, and therefore, long term durability evaluation period during developing MEA having excellent durability is substantially reduced.
Abstract:
Disclosed are a process for separating an electrode for membrane-electrode assemblies of fuel cells from the decal transfer film and an apparatus for separating the electrode. In particular, during the electrode separating process, only an electrode is separated from the decal transfer film on which the electrode is coated, without any damage, by a freezing method for freezing the specimen on the deionized water surface, and thus, wasting the expensive MEA is prevented. Thus, mechanical properties of the pristine electrode can be rapidly quantified in advance, and therefore, long term durability evaluation period during developing MEA having excellent durability is substantially reduced.
Abstract:
Disclosed are a process for separating an electrode for membrane-electrode assemblies of fuel cells from the decal transfer film and an apparatus for separating the electrode. In particular, during the electrode separating process, only an electrode is separated from the decal transfer film on which the electrode is coated, without any damage, by a freezing method for freezing the specimen on the deionized water surface, and thus, wasting the expensive MEA is prevented. Thus, mechanical properties of the pristine electrode can be rapidly quantified in advance, and therefore, long term durability evaluation period during developing MEA having excellent durability is substantially reduced.