Full beam metrology for x-ray scatterometry systems

    公开(公告)号:US11313816B2

    公开(公告)日:2022-04-26

    申请号:US16894401

    申请日:2020-06-05

    Abstract: Methods and systems for characterizing dimensions and material properties of semiconductor devices by full beam x-ray scatterometry are described herein. A full beam x-ray scatterometry measurement involves illuminating a sample with an X-ray beam and detecting the intensities of the resulting zero diffraction order and higher diffraction orders simultaneously for one or more angles of incidence relative to the sample. The simultaneous measurement of the direct beam and the scattered orders enables high throughput measurements with improved accuracy. The full beam x-ray scatterometry system includes one or more photon counting detectors with high dynamic range and thick, highly absorptive crystal substrates that absorb the direct beam with minimal parasitic backscattering. In other aspects, model based measurements are performed based on the zero diffraction order beam, and measurement performance of the full beam x-ray scatterometry system is estimated and controlled based on properties of the measured zero order beam.

    Process Monitoring Of Deep Structures With X-Ray Scatterometry

    公开(公告)号:US20210407864A1

    公开(公告)日:2021-12-30

    申请号:US17468436

    申请日:2021-09-07

    Abstract: Methods and systems for estimating values of process parameters, structural parameters, or both, based on x-ray scatterometry measurements of high aspect ratio semiconductor structures are presented herein. X-ray scatterometry measurements are performed at one or more steps of a fabrication process flow. The measurements are performed quickly and with sufficient accuracy to enable yield improvement of an on-going semiconductor fabrication process flow. Process corrections are determined based on the measured values of parameters of interest and the corrections are communicated to the process tool to change one or more process control parameters of the process tool. In some examples, measurements are performed while the wafer is being processed to control the on-going fabrication process step. In some examples, X-ray scatterometry measurements are performed after a particular process step and process control parameters are updated for processing of future devices.

    Process monitoring of deep structures with X-ray scatterometry

    公开(公告)号:US11145559B2

    公开(公告)日:2021-10-12

    申请号:US16894480

    申请日:2020-06-05

    Abstract: Methods and systems for estimating values of process parameters, structural parameters, or both, based on x-ray scatterometry measurements of high aspect ratio semiconductor structures are presented herein. X-ray scatterometry measurements are performed at one or more steps of a fabrication process flow. The measurements are performed quickly and with sufficient accuracy to enable yield improvement of an on-going semiconductor fabrication process flow. Process corrections are determined based on the measured values of parameters of interest and the corrections are communicated to the process tool to change one or more process control parameters of the process tool. In some examples, measurements are performed while the wafer is being processed to control the on-going fabrication process step. In some examples, X-ray scatterometry measurements are performed after a particular process step and process control parameters are updated for processing of future devices.

    Full Beam Metrology For X-Ray Scatterometry Systems

    公开(公告)号:US20220268714A1

    公开(公告)日:2022-08-25

    申请号:US17723405

    申请日:2022-04-18

    Abstract: Methods and systems for characterizing dimensions and material properties of semiconductor devices by full beam x-ray scatterometry are described herein. A full beam x-ray scatterometry measurement involves illuminating a sample with an X-ray beam and detecting the intensities of the resulting zero diffraction order and higher diffraction orders simultaneously for one or more angles of incidence relative to the sample. The simultaneous measurement of the direct beam and the scattered orders enables high throughput measurements with improved accuracy. The full beam x-ray scatterometry system includes one or more photon counting detectors with high dynamic range and thick, highly absorptive crystal substrates that absorb the direct beam with minimal parasitic backscattering. In other aspects, model based measurements are performed based on the zero diffraction order beam, and measurement performance of the full beam x-ray scatterometry system is estimated and controlled based on properties of the measured zero order beam.

    Methods And Systems For Accurate Measurement Of Deep Structures Having Distorted Geometry

    公开(公告)号:US20220252395A1

    公开(公告)日:2022-08-11

    申请号:US17590116

    申请日:2022-02-01

    Abstract: Methods and systems for estimating values of geometric parameters characterizing in-plane, distorted shapes of high aspect ratio semiconductor structures based on x-ray scatterometry measurements are presented herein. A parameterized geometric model captures the scattering signature of in-plane, non-elliptical distortions in hole shape. By increasing the number of independent parameters employed to describe the in-plane shape of hole structures the model fit to the actual shape of high aspect ratio structures is improved. In one aspect, a geometrically parameterized measurement model includes more than two degrees of freedom to characterize the in-plane shape of a measured structure. In some embodiments, the geometric model includes a closed curve having three degrees of freedom or more. In some embodiments, the geometric model includes a piecewise assembly of two or more conic sections. Independent geometric model parameters are expressed as functions of depth to capture shape variation through the structure.

    Full Beam Metrology For X-Ray Scatterometry Systems

    公开(公告)号:US20200300790A1

    公开(公告)日:2020-09-24

    申请号:US16894401

    申请日:2020-06-05

    Abstract: Methods and systems for characterizing dimensions and material properties of semiconductor devices by full beam x-ray scatterometry are described herein. A full beam x-ray scatterometry measurement involves illuminating a sample with an X-ray beam and detecting the intensities of the resulting zero diffraction order and higher diffraction orders simultaneously for one or more angles of incidence relative to the sample. The simultaneous measurement of the direct beam and the scattered orders enables high throughput measurements with improved accuracy. The full beam x-ray scatterometry system includes one or more photon counting detectors with high dynamic range and thick, highly absorptive crystal substrates that absorb the direct beam with minimal parasitic backscattering. In other aspects, model based measurements are performed based on the zero diffraction order beam, and measurement performance of the full beam x-ray scatterometry system is estimated and controlled based on properties of the measured zero order beam.

    Process monitoring of deep structures with X-ray scatterometry

    公开(公告)号:US11955391B2

    公开(公告)日:2024-04-09

    申请号:US17468436

    申请日:2021-09-07

    Abstract: Methods and systems for estimating values of process parameters, structural parameters, or both, based on x-ray scatterometry measurements of high aspect ratio semiconductor structures are presented herein. X-ray scatterometry measurements are performed at one or more steps of a fabrication process flow. The measurements are performed quickly and with sufficient accuracy to enable yield improvement of an on-going semiconductor fabrication process flow. Process corrections are determined based on the measured values of parameters of interest and the corrections are communicated to the process tool to change one or more process control parameters of the process tool. In some examples, measurements are performed while the wafer is being processed to control the on-going fabrication process step. In some examples, X-ray scatterometry measurements are performed after a particular process step and process control parameters are updated for processing of future devices.

    Process Monitoring Of Deep Structures With X-Ray Scatterometry

    公开(公告)号:US20200303265A1

    公开(公告)日:2020-09-24

    申请号:US16894480

    申请日:2020-06-05

    Abstract: Methods and systems for estimating values of process parameters, structural parameters, or both, based on x-ray scatterometry measurements of high aspect ratio semiconductor structures are presented herein. X-ray scatterometry measurements are performed at one or more steps of a fabrication process flow. The measurements are performed quickly and with sufficient accuracy to enable yield improvement of an on-going semiconductor fabrication process flow. Process corrections are determined based on the measured values of parameters of interest and the corrections are communicated to the process tool to change one or more process control parameters of the process tool. In some examples, measurements are performed while the wafer is being processed to control the on-going fabrication process step. In some examples, X-ray scatterometry measurements are performed after a particular process step and process control parameters are updated for processing of future devices.

Patent Agency Ranking