Abstract:
According to an embodiment, a lens device includes a filter, an entire area of which transmits light of a common color. The filter includes a first filter region and a second filter region. The first filter region transmits light that is a first combination of colors out of colors of light to be received by an image sensor. The second filter region transmits light that is a second combination of colors of the colors of the light to be received by the image sensor. The first and second combinations of colors each include the common color.
Abstract:
An image capturing apparatus includes a sensor controller and a distance calculator. The sensor controller acquires a target image and a first reference image. The point spread function (PSF) of the target image is point-asymmetric, and the PSF of the first reference image being point-symmetric. The image sensor receives light having passed through a filter region that changes PSFs for sensor images of at least one kind into point-asymmetric forms, and then generates the target image for which a PSF has been changed into a point-asymmetric form by the filter region, and the first reference image that is not the target image. The distance calculator calculates the distance to an object captured in the target image and the first reference image, in accordance with the correlations each between an image obtained by convoluting a blur kernel to the target images and the first reference image.
Abstract:
According to one embodiment, an image processing device includes an imaging element, a lens and an image processor. Light passes through the lens toward the imaging element. A relative position of the imaging element and the lens is changeable. The image processor acquires a first image and a second image. The image processor derives a first stored image by adding at least a portion of the second image to the first image. The first image is captured by the imaging element when the relative position is in a first range. The second image is captured by the imaging element when the relative position is in a second range different from the first range.
Abstract:
According to one embodiment, an image processing apparatus includes a memory and one or more processors. The one or more processors are electrically connected to the memory, and calculate blur correction information to make a blur of a first shape of an object approach a blur of a second shape of the object. The first shape of the object is contained in a first component image of one image. The second shape of the object is contained in a second component image of the one image. The one or more processors calculate a distance between an imaging device and the object based on an image distance when the one image is captured and the blur correction information. The image distance is a distance from a lens up to an image forming surface of the object.
Abstract:
According to an embodiment, a lens device includes a filter, an entire area of which transmits light of a common color. The filter includes a first filter region and a second filter region. The first filter region transmits light that is a first combination of colors out of colors of light to be received by an image sensor. The second filter region transmits light that is a second combination of colors of the colors of the light to be received by the image sensor. The first and second combinations of colors each include the common color.
Abstract:
An imaging apparatus includes a filter configured to transmit light and an image sensor configured to generate an image according to the light. The filter includes first to fourth filter regions. The first filter region transmits light of a first wavelength region, and does not transmit light of a second wavelength region. The second filter region does not transmit the light of the first wavelength region and transmits the light of the second wavelength region. The third, filter region does not transmit the light of the first, wavelength region and does not transmit the light of the second wavelength region. The fourth filter region transmits the light of the first wavelength region and transmits the light of the second wavelength region.
Abstract:
A photographing device includes a first image sensor, a first filter area, a second image sensor, a first distance calculating unit, and a second distance calculating unit. The first image sensor includes a first sensor receiving light of a first wavelength band and outputting a target image, and a second sensor receiving light of a second wavelength band and outputting a reference image. The first filter area transmits a first light of a third wavelength band, which includes at least part of the first wavelength band, the first light being a part of light incident on the first image sensor. The second image sensor outputs a first image. The first distance calculating unit calculates a first distance to an object captured in the target image and the reference image. The second distance calculating unit calculates a second distance to an object captured in the reference image and the first image.
Abstract:
An image capturing apparatus includes a sensor controller and a distance calculator. The sensor controller acquires a target image and a first reference image. The point spread function (PSF) of the target image is point-asymmetric, and the PSF of the first reference image being point-symmetric. The image sensor receives light having passed through a filter region that changes PSFs for sensor images of at least one kind into point-asymmetric forms, and then generates the target image for which a PSF has been changed into a point-asymmetric form by the filter region, and the first reference image that is not the target image. The distance calculator calculates the distance to an object captured in the target image and the first reference image, in accordance with the correlations each between an image obtained by convoluting a blur kernel to the target images and the first reference image.
Abstract:
According to one embodiment, an image processing device includes an imaging element, a lens and an image processor. Light passes through the lens toward the imaging element. A relative position of the imaging element and the lens is changeable. The image processor acquires a first image and a second image. The image processor derives a first stored image by adding at least a portion of the second image to the first image. The first image is captured by the imaging element when the relative position is in a first range. The second image is captured by the imaging element when the relative position is in a second range different from the first range.
Abstract:
According to one embodiment, an image processing apparatus includes a buffer and processing circuitry. The buffer stores first and second images capturing an object. The circuitry calculates at least one of a first distance to the object in the first image and a second distance to the object in the second image by using a correction parameter for correcting at least one of influences caused by ambient light, a reflection characteristic of the object, or a color of the object, calculates three-dimensional coordinates of the object on a relative scale by using the first and second images, and calculates three-dimensional coordinates of the object on a real scale based on at least one of the first and second distances, and the three-dimensional coordinates of the object on the relative scale.