摘要:
An aluminum nitride-based ceramic sintered body is provided, which is manufactured by sintering an aluminum nitride powder comprising aluminum nitride as a main component, carbon in an amount of 0.1 wt % or more to 1.0 wt % or less, and containing oxygen in an amount that is not greater than 0.7 wt %, wherein carbon and oxygen are dissolved in grains of the aluminum nitride powder. The a-axis length of the lattice constant of the aluminum nitride is in a range of 3.1120 Å or more to 3.1200 Å or less, and the a c-axis length of the lattice constant is in a range of 4.9810 Å or more to 4.9900 Å or less. The volume resistivity of the aluminum nitride-based ceramic sintered body at 500° C. is 109 Ω·cm or more.
摘要:
A novel aluminum nitride material having a low room temperature volume resistivity is provided. The aluminum nitride material has an aluminum nitride main component and includes at least 0.03 mol % of europium oxide. The aluminum nitride material has an aluminum nitride phase and an europium-aluminum composite oxide phase. An aluminum nitride material also provided having an aluminum nitride main component, wherein a total content of europium oxide and samarium oxide is at least 0.09 mol %. The aluminum nitride material has an aluminum nitride phase and a composite oxide phase containing at least europium and aluminum.
摘要:
An aluminum nitride-based ceramic sintered body is provided, which is manufactured by sintering an aluminum nitride powder comprising aluminum nitride as a main component, carbon in an amount of 0.1 wt % or more to 1.0 wt % or less, and containing oxygen in an amount that is not greater than 0.7 wt %, wherein carbon and oxygen are dissolved in grains of the aluminum nitride powder. The a-axis length of the lattice constant of the aluminum nitride is in a range of 3.1120 Å or more to 3.1200 Å or less, and the a c-axis length of the lattice constant is in a range of 4.9810 Å or more to 4.9900 Å or less. The volume resistivity of the aluminum nitride-based ceramic sintered body at 500° C. is 109 Ω·cm or more.
摘要:
100 g of aluminum nitride (AlN) powder and 2.0 g of aluminum oxide (Al2O3) powder were placed in graphite crucible. Thereafter, the entire crucible was treated with heat by keeping it in a nitrogen atmosphere at a temperature of 2200° C. and a pressure of 1.5 kgf/cm2 for 2 hours. In this manner, aluminum nitride powder was prepared.
摘要翻译:将100g的氮化铝(AlN)粉末和2.0g氧化铝(Al 2 O 3 O 3)粉末放入石墨坩埚中。 此后,将整个坩埚在2200℃的温度和1.5kgf / cm 2的压力下保持在氮气氛中加热处理2小时。 以这种方式制备氮化铝粉末。
摘要:
An aluminum nitride-based ceramic sintered body is provided, which is manufactured by sintering an aluminum nitride powder comprising aluminum nitride as a main component, carbon in an amount of 0.1 wt % or more to 1.0 wt % or less, and containing oxygen in an amount that is not greater than 0.7 wt %, wherein carbon and oxygen are dissolved in grains of the aluminum nitride powder. The a-axis length of the lattice constant of the aluminum nitride is in a range of 3.1120 Å or more to 3.1200 Å or less, and the a c-axis length of the lattice constant is in a range of 4.9810 Å or more to 4.9900 Å or less. The volume resistivity of the aluminum nitride-based ceramic sintered body at 500° C. is 109 Ω·cm or more.
摘要:
An aluminum oxide sintered product including a layer phase containing a rare-earth element and fluorine among grains of aluminum oxide serving as a main component, or a phase containing a rare-earth element and fluorine along edges of grains of aluminum oxide serving as a main component. The product includes a phase containing a rare-earth element and a fluorine element among grains of aluminum oxide, the phase not being in the form of localized dots but in the form of line segments, when viewed in an SEM image. The product can be readily adjusted to have a volume resistivity in the range of 1×1013 to 1×1016 Ω·cm, the volume resistivity being calculated from a current value after the lapse of 1 minute from the application of a voltage of 2 kV/mm to the aluminum oxide sintered product at room temperature.
摘要:
An aluminum oxide sintered product including a layer phase containing a rare-earth element and fluorine among grains of aluminum oxide serving as a main component, or a phase containing a rare-earth element and fluorine along edges of grains of aluminum oxide serving as a main component. The product includes a phase containing a rare-earth element and a fluorine element among grains of aluminum oxide, the phase not being in the form of localized dots but in the form of line segments, when viewed in an SEM image. The product can be readily adjusted to have a volume resistivity in the range of 1×1013 to 1×1016 Ω·cm, the volume resistivity being calculated from a current value after the lapse of 1 minute from the application of a voltage of 2 kV/mm to the aluminum oxide sintered product at room temperature.
摘要:
A conductive channel formed of an (Sm, Ce)Al11O18 is interconnected in the grain boundaries of aluminum nitride (AlN) particles, thereby reducing temperature dependency of volume resistivity of AlN sintered body; at the same time, the solid solution of the AlN particles is formed with at least one of C and Mg, to prevent the conductive channel from moving in AlN particles, thereby maintaining the volume resistivity within AlN particles at a high value even at a high temperature.
摘要翻译:由(Sm,Ce)Al 11 O 18形成的导电通道在氮化铝(AlN)颗粒的晶界处相互连接,从而降低体积电阻率的温度依赖性 的AlN烧结体; 同时,AlN颗粒的固溶体由C和Mg中的至少一种形成,以防止导电通道在AlN颗粒中移动,从而即使在高的AlN颗粒中也保持AlN颗粒内的体积电阻率高值 温度。
摘要:
A conductive channel formed of an (Sm, Ce)Al11O18 is interconnected in grain boundaries of aluminum nitride (AlN) particles, thereby reducing the temperature dependency of the volume resistivity of an AlN sintered body formed therefrom. At the same time, a solid solution of the AlN particles is formed with at least one of C and Mg, to prevent the conductive channel from moving into the AlN particles, thereby maintaining a high volume resistivity within the AlN particles even at a high temperature.
摘要翻译:由(Sm,Ce)Al 11 O 18形成的导电沟道在氮化铝(AlN)颗粒的晶界处相互连接,从而降低了由其形成的AlN烧结体的体积电阻率的温度依赖性。 同时,用C和Mg中的至少一种形成AlN颗粒的固溶体,以防止导电通道移动到AlN颗粒中,从而即使在高温下也保持AlN颗粒内的高体积电阻率 。
摘要:
The object is to maintain the operations of a logistic system. The recovering method of the logistic system includes a plurality of controllers connected with each other via a local network. A recovery method for the logistic system comprises detecting an abnormal state of the plurality of controllers, outputting a switching requesting signal, receiving a control signal, and outputting the control signal. In outputting the switching requesting signal, when an abnormal controller that shows the abnormal state is detected, a switching requesting signal to switch from the abnormal controller to an alternate controller is outputted from the logistic system to the alternate controller. In receiving the control signal, a control signal that controls at least a part of operations of the logistic system instead of the abnormal controller is received from the alternate controller.