摘要:
Disclosed embodiments relate to a display deformation detection system that detects display deformations based upon changes in resistance and/or capacitance. In one embodiment, a method includes measuring a baseline comprising a baseline resistance or a baseline capacitance or both of a conductive mesh disposed within or overlaid on the display panel. The method further includes detecting a change in the baseline resistance or the baseline capacitance or both and calculating a change location where the change in the baseline resistance or the baseline capacitance or both occurred. The method also includes calculating a magnitude of the change in the baseline resistance or the baseline capacitance or both.
摘要:
Disclosed embodiments relate to a display temperature detection system that can detect temperature variations in different regions of a display panel. The temperature measuring display system includes a display panel that provides graphical images. Further, the temperature measuring display system includes temperature measurement circuitry. The temperature measurement circuitry includes one or more thermal diodes, transistors, or a mesh layer useful to determine at least one temperature measurement of the display panel.
摘要:
Disclosed embodiments relate to a display temperature detection system that can detect temperature variations in different regions of a display panel. The temperature measuring display system includes a display panel that provides graphical images. Further, the temperature measuring display system includes temperature measurement circuitry. The temperature measurement circuitry includes one or more thermal diodes, transistors, or a mesh layer useful to determine at least one temperature measurement of the display panel.
摘要:
Methods and devices employing circuitry for quickly discharging pixels of a display before the display is turned off are provided. In one example, a method may include receiving at the electronic display a signal indicating the electronic display will be powered off within a period of time. The method may also include, in response to the signal, causing a frame of pixel data originating from the electronic display to be stored in pixels of the electronic display before the electronic display is powered off. Storing the frame of pixel data in the pixels may inhibit image artifacts from occurring on the electronic display when the electronic display is powered back on in the future.
摘要:
Systems and methods for monitoring internal resistance of a display. The method may include supplying the display via a capacitor with a first voltage configured to enable the display to receive one or more touch inputs. After supplying the display with the first voltage, the method may include discharging the capacitor to a second voltage configured to enable the display to display image data. The method may then monitor a discharge waveform that corresponds to when the capacitor discharges from the first voltage to the second voltage. Based at least in part on the discharge waveform, the method may determine a chip on glass resistance value and a flex on glass resistance value that correspond to an internal resistance of the display.
摘要:
Methods and devices employing circuitry for quickly discharging pixels of a display before the display is turned off are provided. In one example, a method may include receiving at the electronic display a signal indicating the electronic display will be powered off within a period of time. The method may also include, in response to the signal, causing a frame of pixel data originating from the electronic display to be stored in pixels of the electronic display before the electronic display is powered off. Storing the frame of pixel data in the pixels may inhibit image artifacts from occurring on the electronic display when the electronic display is powered back on in the future.
摘要:
Systems and methods for monitoring internal resistance of a display. The method may include supplying the display via a capacitor with a first voltage configured to enable the display to receive one or more touch inputs. After supplying the display with the first voltage, the method may include discharging the capacitor to a second voltage configured to enable the display to display image data. The method may then monitor a discharge waveform that corresponds to when the capacitor discharges from the first voltage to the second voltage. Based at least in part on the discharge waveform, the method may determine a chip on glass resistance value and a flex on glass resistance value that correspond to an internal resistance of the display.
摘要:
A method and system is disclosed for powering device sub-circuitry of an electronic device. The sub-circuitry may be used to provide control signals to a direct current switcher on a main system board, thus eliminating passive circuitry typically associated with the sub-circuitry. Furthermore, by actively generating the control signals for the direct current switcher, explicit timing control circuitry is not required to synchronize the transmitted power to the sub-circuitry.
摘要:
Systems, methods, and devices relating to directly bonding electrode pads of a flexible printed circuit (FPC) to electrode pads of a glass substrate are provided. In one example, such a system may include a glass substrate with electrode pads and an FPC with corresponding electrode pads. A joining edge of each electrode pad of the FPC may couple directly to a joining edge of a corresponding electrode pad of the glass substrate, without an intervening conductive adhesive layer or an anisotropic conductive film (ACF) layer, or a combination thereof.
摘要:
Systems and methods for preventing parasitic capacitances within liquid crystal displays are provided. A display panel according to an embodiment may include, for example, a pixel with a pixel electrode and a transistor coupled to a gate line. Additionally, the pixel may include a shielding conductor interposed between the pixel electrode and the gate line. The shielding conductor may shield the pixel electrode from a parasitic capacitance with the gate line by causing a parasitic capacitance to form between the gate line and the shielding conductor instead of between the gate line and the pixel electrode.