Abstract:
A pressure sensor of a pressure-sensor module is connected to a wet space in a vehicle door by a through-passage channel of a sealing cushion and a connecting branch, which is guided with sealing action through a partition. A housing of the sensor module is located in a dry space. An interior of the housing and the dry space are sealed in relation to the interior of the connecting branch, with the result that a water-tightness of the housing, in which a printed circuit board and electronic components are accommodated, does not have to meet high requirements.
Abstract:
A detonator device for tripping a passenger restraint device in a motor vehicle includes a detonator circuit on a holder. Firing pins for receiving a detonator element are an integral component of the holder.
Abstract:
A control assembly for a passenger protection system of a vehicle which is tripped upon the occurrence of a side impact traffic accident. The control assembly has at least one detector adapted to detect a pressure rise in a hollow body. The at least one detector is mounted in a largely enclosed side portion on the side of the vehicle body defining a hollow body such as a door. A control unit is connected to and receives signals from the at least one detector. The control unit evaluates a sudden and largely adiabatic air pressure rise detected by the detector upon a side impact collision and determines whether to actuate a passenger protection system such as an air bag.
Abstract:
A sensor unit for controlling an occupant protection system has a sensor which is held in its position on a printed circuit board through the use of an elastic damping holder. The damping holder is soldered onto the printed circuit board together with the sensor. In addition, the damping holder protects the sensor during the production and mounting of the sensor unit.
Abstract:
An RF-shielding multicomponent metallic or metal-coated circuit housing (W, D) contains a printed circuit board (L), and a plug (S) which is connected to plug terminals (P) provided in the printed circuit board (L). A housing section (W) has a bay (E/B) which has metallic or metal-coated walls (B) which are at housing potential in the assembled state of the housing (W, D) and in which (E/B) the plug (S) is mounted. The bay (E/B) is open at one side face (M), the "open side face" (M), facing the inside (Q) of the housing, the bay (E/B) having edges (C) situated in a single plane and facing the open side face. The open side face (M) is covered by the printed circuit board (L) in the assembled state of the housing (W, D). The printed circuit board (L) is coated over a large area of its section (M) facing the bay (E/B) with a conducting layer (M) in such a way that strips of said layer (M) rest on the edges (C) in the assembled state of the housing (W, D) so that the layer (M) covers the bay (E/B) and the layer (M) is then at housing potential.
Abstract:
A pneumatic disc brake has a caliper which straddles a brake disc, brake pads pressable against the brake disc, wherein a brake-application-side brake pad can be actuated by a brake lever of a brake application device pivotable about an eccentric axis. Against the end side, the brake lever bears a brake ram which is coupled at the other side to the brake pad or to a guide plate coupled thereto. Two pressure rams are aligned in the same direction and spaced apart from the brake ram. The pressure rams are connected in each case to the caliper and to the brake pad or to the guide plate and have a self-energizing device. The caliper has spherical-cap-shaped bearing receptacles in which rest corresponding plain bearing elements, by which the brake lever, and the pressure rams are supported on the caliper.
Abstract:
A pneumatic disc brake includes a caliper which straddles a brake disc, brake pads pressable against the brake disc and a rotary lever actuated brake application device, and a self-energizing mechanism. The brake lever is pivotable about an eccentric axis by a broke cylinder plunger. A self-energizing factor is selected to ensure that the brake automatically releases after braking events. The brake lever is supported on a spherical bearing element mounted to the caliper and forming the eccentric axis. The brake lever bears against a bearing ball which is arranged above the bearing element in the direction of the plunger engagement point, which bearing ball is positioned in a brake ram coupled to the brake pad.
Abstract:
A pneumatically actuatable disc brake has a caliper straddling a brake disc. One brake pad on an application side being actuatable by a rotary lever of a brake application device. A brake cylinder, which can be pressurized using air pressure, is attached to a flange of calliper. The brake cylinder engages into the rotary lever via a cylinder plunger and has a return spring for returning the cylinder plunger to an unstressed initial position. The return spring abuts against the base of a cover supported on the flange. The disc brake is configured such that a self-energizing device is provided having a self-energizing factor selected such that the brake automatically releases itself after braking. The flange forms an abutment for the return spring.
Abstract:
A self-boosting electromechanically actuable disc brake, having an application device for applying the brake pad, which application device has a rotary brake lever and a self-boosting device, wherein the rotary brake lever acts on an actuating plunger which acts on the application-side brake lining directly or via a pressure plate, is characterized in that the actuating plunger is pivotably mounted on the rotary brake lever and on the pressure plate or the application-side brake lining with an intersecting rotational axis.
Abstract:
A wort copper and a method of boiling wort, with the wort copper having an external boiler arranged outside of the wort copper, which cyclically heats wort from the wort copper, wherein the heated wort is re-supplied to the wort copper, and comprises an infeed tube and a rising pipe, through which wort heated by the external boiler rises upwards in the wort copper, as well as at least one intake opening is provided in the rising line for sucking in wort from a wort reservoir of the wort copper, wherein the cross-sectional surface of the rising pipe enlarges at least section-wise towards the upper end of the rising pipe.