摘要:
Provided are a semiconductor device and a method of fabricating the semiconductor device. The semiconductor device using a DMOS device includes: a semiconductor substrate, in which a first conductive type well is formed; a first conductive type gate electrode formed on the semiconductor substrate with a gate insulating layer intervening between the gate electrode and the semiconductor substrate; a second conductive type body electrode formed on the semiconductor substrate and separated from the gate electrode; a first conductive type drain electrode formed on the semiconductor substrate and separated from the gate electrode and the body electrode; a second conductive type first body region formed in the well under the body electrode; a second conductive type second body region extending from the first body region to the gate insulating layer and formed in the well; a first conductive type source region formed in the second body region and extending from the first body region to the gate insulating layer; and a first conductive type source electrode extending from the source region to surround the gate electrode on the semiconductor substrate with an insulating layer intervening between the source electrode and gate electrode.
摘要:
Provided are a semiconductor device and a method of fabricating the semiconductor device. The semiconductor device using a DMOS device includes: a semiconductor substrate, in which a first conductive type well is formed; a first conductive type gate electrode formed on the semiconductor substrate with a gate insulating layer intervening between the gate electrode and the semiconductor substrate; a second conductive type body electrode formed on the semiconductor substrate and separated from the gate electrode; a first conductive type drain electrode formed on the semiconductor substrate and separated from the gate electrode and the body electrode; a second conductive type first body region formed in the well under the body electrode; a second conductive type second body region extending from the first body region to the gate insulating layer and formed in the well; a first conductive type source region formed in the second body region and extending from the first body region to the gate insulating layer; and a first conductive type source electrode extending from the source region to surround the gate electrode on the semiconductor substrate with an insulating layer intervening between the source electrode and gate electrode.
摘要:
Provided are a semiconductor device and a method of fabricating the semiconductor device. The semiconductor device using a DMOS device includes: a semiconductor substrate, in which a first conductive type well is formed; a first conductive type gate electrode formed on the semiconductor substrate with a gate insulating layer intervening between the gate electrode and the semiconductor substrate; a second conductive type body electrode formed on the semiconductor substrate and separated from the gate electrode; a first conductive type drain electrode formed on the semiconductor substrate and separated from the gate electrode and the body electrode; a second conductive type first body region formed in the well under the body electrode; a second conductive type second body region extending from the first body region to the gate insulating layer and formed in the well; a first conductive type source region formed in the second body region and extending from the first body region to the gate insulating layer; and a first conductive type source electrode extending from the source region to surround the gate electrode on the semiconductor substrate with an insulating layer intervening between the source electrode and gate electrode.
摘要:
A semiconductor device, and a method of manufacturing the same, containing a high voltage DMOS transistor, a low voltage CMOS transistor, and a bipolar transistor in a single substrate. The steps include forming an isolation layer within the substrate in an isolation region between each of a DMOS region, a CMOS region, or a bipolar region. A first oxide layer of variable thickness is formed on the substrate, a thick second oxide layer is formed on the isolation layer, and a polysilicon layer is formed on both oxide layers. The polysilicon layer is patterned to form gate patterns on the first oxide layer and resistive patterns on the second oxide layer. The gate pattern is then doped but the resistive pattern is undoped. The thickness of the first oxide layer in the DMOS region is greater than the thickness of the first oxide layer in the CMOS region.
摘要:
A high voltage semiconductor device includes a source region of a first conductivity type having an elongated projection with two sides and a rounded tip in a semiconductor substrate. A drain region of the first conductivity type is laterally spaced from the source region in the semiconductor substrate. A gate electrode extends along the projection of the source region on the semiconductor substrate between the source and drain regions. Top floating regions of a second conductivity type are disposed between the source and drain regions in the shape of arched stripes extending along the rounded tip of the projection of the source region. The top floating regions are laterally spaced from one another by regions of the first conductivity type to thereby form alternating P-N regions along the lateral dimension.
摘要:
Methods of forming vertical trench-gate semiconductor devices include the steps of patterning an oxidation resistant layer having an opening therein, on a face of a semiconductor substrate, and then forming a trench in the semiconductor substrate, opposite the opening in the oxidation resistant layer. An insulated gate electrode is then formed in the trench. The face of the semiconductor substrate is then oxidized to define self-aligned electrically insulating regions in the opening and at a periphery of the patterned oxidation resistant layer. Here, the patterned oxidation resistant layer is used as an oxidation mask so that portions of the substrate underlying the oxidation resistant layer are not substantially oxidized. Source and body region dopants of first and second conductivity type, respectively, are then implanted into the substrate to define preliminary source and body regions which extend adjacent a sidewall of the trench. During the implanting step, the electrically insulating regions are used as a self-aligned implant mask. The implanted dopants are then diffused into the substrate to define source and body regions adjacent upper and intermediate portions of the sidewall of the trench, respectively.
摘要:
There is provided a high voltage gate driver integrated circuit. The high voltage gate driver integrated circuit includes: a high voltage region; a junction termination region surrounding the high voltage region; a low voltage region surrounding the junction termination region; a level shift transistor disposed between the high voltage region and the low voltage region, at least some portions of the level shift transistor being overlapped with the junction termination region; and/or a high voltage junction capacitor disposed between the high voltage region and the low voltage region, at least some portions of the high voltage junction capacitor being overlapped with the junction termination region.
摘要:
A trench DMOS device having improved breakdown characteristics. The trench DMOS device has a gate oxide layer which has a substantially flattened thick portion in the bottom of the trench and which is relatively thinner on the sidewalls. In greater detail, the trench DMOS device comprises a trench formed in a semiconductor substrate, said trench having sidewalls and a bottom, a gate polysilicon layer filled into said trench, and a gate oxide layer formed between said gate polysilicon layer and the sidewalls and bottom of said trench, wherein a bottom part of said gate oxide layer has a thickness greater than both sidewall parts thereof, and a central region of said bottom part is substantially flattened with a thickness greater than boundary regions thereof. Also disclosed is a novel method of fabricating a trench DMOS device.
摘要:
Semiconductor-on-insulator (SOI) devices are fabricated by forming first and second semiconductor layers of opposite conductivity types, at a first face of a substrate. An insulating layer is formed on the first and second semiconductor layers. A trench is formed through the insulating layer extending between the first and second semiconductor layers and extending into the substrate. A portion of the substrate is removed from a second face which is opposite the first face, to define respective first and second active regions on the respective first and second semiconductor layers.
摘要:
Disclosed is a power semiconductor device including a bootstrap circuit. The power semiconductor device includes a high voltage unit that provides a high voltage control signal so that a high voltage is output; a low voltage unit that provides a low voltage control signal so that a ground voltage is output, and is spaced apart from the high voltage unit; a charge enable unit that is electrically connected to the low voltage unit and charges a bootstrap capacitor for supplying power to the high voltage unit when the high voltage is output, when the ground voltage is output; and a high voltage cut-off unit that cuts off the high voltage when the high voltage is output so that the high voltage is not applied to the charge enable unit, and includes a first terminal electrically connected to the charge enable unit and a second terminal electrically connected to the high voltage unit.