Abstract:
A new light modulating material using interconnected unidirectionally oriented microdomains of a liquid crystal, dispersed in a stressed polymer structure, is provided. The light modulating material is prepared by dissolving the liquid crystal in an uncured monomer and then curing the monomer so that the polymer forms a well-developed interpenetrating structure of polymer chains or sheets that is uniformly dispersed through the film. When the film is subjected to stress deformation the liquid crystal undergoes a change in its unidirectional orientation. The concentration of the polymer is high enough to hold the shear stress, but is as low as possible to provide the highest switch of the phase retardation when an electric field is applied. The new materials are optically transparent and provide phase modulation of the incident light opposed to the low driving voltage, linear electro-optical response, and absence of hysteresis. It has been shown that these new materials may be successfully used in display applications, optical modulator, and beam steering devices.
Abstract:
A new light modulating material using interconnected unidirectionally oriented microdomains of a liquid crystal, dispersed in a stressed polymer structure, is provided. The light modulating material is prepared by dissolving the liquid crystal in an uncured monomer and then curing the monomer so that the polymer forms a well-developed interpenetrating structure of polymer chains or sheets that is uniformly dispersed through the film. When the film is subjected to stress deformation the liquid crystal undergoes a change in its unidirectional orientation. The concentration of the polymer is high enough to hold the shear stress, but is as low as possible to provide the highest switch of the phase retardation when an electric field is applied. The new materials are optically transparent and provide phase modulation of the incident light opposed to the low driving voltage, linear electro-optical response, and absence of hysteresis. It has been shown that these new materials may be successfully used in display applications, optical modulator, and beam steering devices.
Abstract:
A new light modulating material using interconnected unidirectionally oriented microdomains of a liquid crystal, dispersed in a stressed polymer structure, is provided. The light modulating material is prepared by dissolving the liquid crystal in an uncured monomer and then curing the monomer so that the polymer forms a well-developed interpenetrating structure of polymer chains or sheets that is uniformly dispersed through the film. When the film is subjected to stress deformation the liquid crystal undergoes a change in its unidirectional orientation. The concentration of the polymer is high enough to hold the shear stress, but is as low as possible to provide the highest switch of the phase retardation when an electric field is applied. The new materials are optically transparent and provide phase modulation of the incident light opposed to the low driving voltage, linear electro-optical response, and absence of hysteresis. It has been shown that these new materials may be successfully used in display applications, optical modulator, and beam steering devices.
Abstract:
A thermochromic fabric utilizing cholesteric liquid crystals includes a fabric material or garment formed therefrom. The liquid crystal material is patterned with a plurality of different liquid crystal formulations, whereby each formulation has high thermal sensitivity over a narrow temperature range. As a result, the aggregate pattern of liquid crystal material formed on the thermochromic fabric allows the thermochromic fabric to have high thermal sensitivity over a broad temperature range. As such, the fabric or garment may be worn on specific body parts of a patient, such as his or her feet, to assist in making a medical diagnosis.
Abstract:
An improved surgical needle is disclosed. The needle has a butt. The butt has a proximal and a distal end. A blind hole is in the butt. The hole originates at the proximal and terminates at the distal end of the butt. A crimp is adjacent to the butt. The improvement to the crimp comprises a first and a second side that are essentially parallel. A third side is essentially perpendicular to the first and second sides. A fourth side is curvilinear. The curvilinear fourth side can be a semicircle. A machine and a method of attaching a surgical suture to the improved needle is also disclosed.
Abstract:
An improved surgical needle is disclosed. The needle has a butt. The butt has a proximal and a distal end. A blind hole is in the butt. The hole originates at the proximal and terminates at the distal end of the butt. A crimp is adjacent to the butt. The improvement to the crimp comprises a first and a second side that are essentially parallel. A third side is essentially perpendicular to the first and second sides. A fourth side is curvilinear. The curvilinear fourth side can be a semicircle. A machine and a method of attaching a surgical suture to the improved needle is also disclosed.
Abstract:
An extended temperature range polymer dispersed liquid crystal light shutter electrically switchable between a transmissive and an opaque state over a working temperature range of about -40.degree. C. to about 100.degree. C. The shutter includes a polymer-dispersed liquid crystalline (PDLC) material comprising a fairly highly cross-linked transparent matrix having phase-separated microdroplets of liquid crystal dispersed therein, the liquid crystal existing in a supercooled liquid crystalline state at low temperatures. Such light shutters are employed in various windows and electrooptic displays, wherever it is desirable to be able to adjust visible or transparency and regardless of temperature extremes.
Abstract:
A thermochromic fabric utilizing cholesteric liquid crystals includes a fabric material or garment formed therefrom. The liquid crystal material is patterned with a plurality of different liquid crystal formulations, whereby each formulation has high thermal sensitivity over a narrow temperature range. As a result, the aggregate pattern of liquid crystal material formed on the thermochromic fabric allows the thermochromic fabric to have high thermal sensitivity over a broad temperature range. As such, the fabric or garment may be worn on specific body parts of a patient, such as his or her feet, to assist in making a medical diagnosis.
Abstract:
The invention relates to flexible liquid crystal devices and methods, and the electrically conducting backplane of a liquid crystal display for example. A substrate is provided that supports components of a liquid crystal display including a liquid crystal layer that is electrically addressed to produce images. The substrate can be flexible or drapable. An electrode arrangement is formed on the substrate, which includes a plurality of small islands or zones of highly conductive material. The highly conductive islands or zones may be dimensioned to be smaller than the dimensions of the electrode pattern, and are electrically isolated from one another. The plurality of islands or zones are then connected in a predetermined pattern by a conducting polymer layer having a predetermined configuration to provide the desired electrode pattern.
Abstract:
Fluidic flow is directed in a capillary or channel in a miniaturized separation or microfluidic device by the addition of liquid crystals to the fluid filling the channel. The liquid crystal medium undergoes changes in morphology upon the addition of external stimuli (magnetic and/or electric field and temperature). Under appropriate conditions this externally triggered change in liquid crystal produces a change in viscosity. This triggered change in viscosity directs fluid flow in multiple path channels and/or capillaries and therefore serves as a means of directing and controlling fluid flow within a capillary or channel in a miniaturized separation or microfluidic device.