Abstract:
A new light modulating material using interconnected unidirectionally oriented microdomains of a liquid crystal, dispersed in a stressed polymer structure, is provided. The light modulating material is prepared by dissolving the liquid crystal in an uncured monomer and then curing the monomer so that the polymer forms a well-developed interpenetrating structure of polymer chains or sheets that is uniformly dispersed through the film. When the film is subjected to stress deformation the liquid crystal undergoes a change in its unidirectional orientation. The concentration of the polymer is high enough to hold the shear stress, but is as low as possible to provide the highest switch of the phase retardation when an electric field is applied. The new materials are optically transparent and provide phase modulation of the incident light opposed to the low driving voltage, linear electro-optical response, and absence of hysteresis. It has been shown that these new materials may be successfully used in display applications, optical modulator, and beam steering devices.
Abstract:
A new light modulating material using interconnected unidirectionally oriented microdomains of a liquid crystal, dispersed in a stressed polymer structure, is provided. The light modulating material is prepared by dissolving the liquid crystal in an uncured monomer and then curing the monomer so that the polymer forms a well-developed interpenetrating structure of polymer chains or sheets that is uniformly dispersed through the film. When the film is subjected to stress deformation the liquid crystal undergoes a change in its unidirectional orientation. The concentration of the polymer is high enough to hold the shear stress, but is as low as possible to provide the highest switch of the phase retardation when an electric field is applied. The new materials are optically transparent and provide phase modulation of the incident light opposed to the low driving voltage, linear electro-optical response, and absence of hysteresis. It has been shown that these new materials may be successfully used in display applications, optical modulator, and beam steering devices.
Abstract:
A new light modulating material using interconnected unidirectionally oriented microdomains of a liquid crystal, dispersed in a stressed polymer structure, is provided. The light modulating material is prepared by dissolving the liquid crystal in an uncured monomer and then curing the monomer so that the polymer forms a well-developed interpenetrating structure of polymer chains or sheets that is uniformly dispersed through the film. When the film is subjected to stress deformation the liquid crystal undergoes a change in its unidirectional orientation. The concentration of the polymer is high enough to hold the shear stress, but is as low as possible to provide the highest switch of the phase retardation when an electric field is applied. The new materials are optically transparent and provide phase modulation of the incident light opposed to the low driving voltage, linear electro-optical response, and absence of hysteresis. It has been shown that these new materials may be successfully used in display applications, optical modulator, and beam steering devices.
Abstract:
The invention provides a liquid crystal (LC) composite, a LC cell, a LC device, and a method thereof. The LC composite comprises (i) a liquid crystal material, and (ii) a copolymer polymerized from LC monomers and non-LC-monomers; and the LC composite is mechanically stressed/sheared. The invention exhibits numerous merits such as high transmittance in visible and IR range, hysteresis free, and a simple fabrication process; and may be utilized in LC device applications such as adaptive optics e.g. beam steering devices and fast tip-tilt wavefront correctors; and general optical applications such as eye wears, compact cameras and compact telescopes.
Abstract:
This disclosure outlines a new method of modifying the properties of existing liquid crystals by doping them with ferroelectric micro- and nanoparticles. We show that this approach, in contrast to the traditional time consuming and expensive chemical synthetic methods, enriches and enhances the electro-optical performance of many liquid crystal materials. We demonstrate that by changing the concentration and type of ferroelectric particles the physical properties of the nematic, smectic, and cholesteric liquid crystal materials can be changed, including the dielectric constants, the birefringence, the phase transition temperatures, and even the order parameter. We also demonstrate the performance of these new materials in various devices, including displays, light modulators, and beam steering devices.
Abstract:
A liquid crystal device comprises ferroelectric particles suspended in a liquid crystal material. A method for fabricating a light-modulating device is also disclosed. The method comprises the steps of providing a pair of substrates with a cell gap therebetween, wherein electrodes are disposed on the facing surfaces of the substrates, and permanently disposing a suspension of ferroelectric particles in a liquid crystal material into said cell gap. A method of generating an image comprises providing a pair of substrates with a cell gap therebetween, providing transparent electrodes on each of said substrates adjacent to the cell gap, permanently disposing a suspension of ferroelectric particles in a liquid crystal material within the cell gap, and applying an electric field across the electrodes.