摘要:
Systems and methods for the detection, analysis, and collection of rare cellular events, wherein rare cellular events are defined by events comprising less than 5% of a total number of cells in a sample. The systems and methods generally include: (1) a flow cell dimensioned so as to permit a flow of a sample through the flow cell at a flow rate greater than 300,000 cells per second; (2) a laser positioned to emit a laser beam directed to the flow cell; (3) one or more deflector components disposed between the laser and the flow cell, wherein the deflector component is configured to affect a position of the laser beam relative to the sample flow; (4) one or more fluorescence emission detectors; and (5) one or more processor configured to detect rare cellular events based on fluorescence emission from cell-binding surface markers introduced into the sample prior to the sample being flowed through the flow cell.
摘要:
Systems and methods for the detection, analysis, and collection of rare cellular events, wherein rare cellular events are defined by events comprising less than 5% of a total number of cells in a sample. The systems and methods generally include: (1) a flow cell dimensioned so as to permit a flow of a sample through the flow cell at a flow rate greater than 300,000 cells per second; (2) a laser positioned to emit a laser beam directed to the flow cell; (3) one or more deflector components disposed between the laser and the flow cell, wherein the deflector component is configured to affect a position of the laser beam relative to the sample flow; (4) one or more fluorescence emission detectors; and (5) one or more processor configured to detect rare cellular events based on fluorescence emission from cell-binding surface markers introduced into the sample prior to the sample being flowed through the flow cell.
摘要:
A temperature gradient may be provided across an array of waveguides in an arrayed waveguide grating. As a result, temperature tuning may be provided to adjust the characteristics of the arrayed waveguide grating. For example, the array of waveguides positioned on one side of a planar light wave circuit may be heated by a similarly configured array of heaters on the opposite side of the circuit. In some cases the number of heaters may be less than the number of arrayed waveguides. Also, each of the heaters in one embodiment may be selectively actuatable.
摘要:
A thermo-optic device may be formed with trenches that undercut the substrate beneath the thermo-optic device. Through the removal of the underlying substrate, the heat dissipation of the thermo-optic device may be reduced. This may reduce the thermal budget of the device, reducing the power requirements for operating the device in some embodiments.
摘要:
A waveguide under test can be exposed to a light signal whose polarization rotates between the vertical and horizontal polarizations. The intensity detected at a photodetector can be separated into AC and DC components. The AC components may be utilized to derive a characteristics which is indicative of birefringence of the waveguide. If the light signal is scanned over the waveguide under test, a measure of the birefringence at each position along the waveguide may be determined.