Abstract:
Utility meter readings generated at low sampling rates are disaggregated to identify consumer usage activities. Time intervals between readings can include a plurality of consumer usage activities. By employing a model which recognizes associations among consumer usage activities, effective disaggregation is possible using only aggregated consumption data and interval start times. Consumers and utility managers can design and assess conservation programs based on the disaggregated consumption usage activities.
Abstract:
Utility meter readings generated at low sampling rates are disaggregated to identify consumer usage activities. Time intervals between readings can include a plurality of consumer usage activities. By employing a model which recognizes associations among consumer usage activities, effective disaggregation is possible using only aggregated consumption data and interval start times. Consumers and utility managers can design and assess conservation programs based on the disaggregated consumption usage activities.
Abstract:
A computer program product includes a tangible storage medium readable by a processing circuit and on which instructions are stored for execution by the processing circuit for performing a method. The method includes, upon receiving utility consumption data of a group of elements, defining clusters of elements by like geography and like utility consumption, evaluating a significance of each cluster by comparing an average utility consumption within the cluster with utility consumption of elements neighboring the cluster and determining from a result of the evaluating which clusters exhibit significant differences in utility consumption from the neighboring elements and defining those clusters as regional outliers.
Abstract:
A consumable characteristic identification method is provided. The method comprises the following steps: detecting a consumable package (210); identifying a characteristic about a consumable associated with the consumable package (215); modifying a device setting according to the identified characteristic (220); and appending a log entry associated with the consumable package to a user activity log (225). A consumable characteristic identification apparatus and no-transitory machine-readable storage medium are also provided.
Abstract:
A consumable characteristic identification method is provided. The method comprises the following steps: detecting a consumable package (210); identifying a characteristic about a consumable associated with the consumable package (215); modifying a device setting according to the identified characteristic (220); and appending a log entry associated with the consumable package to a user activity log (225). A consumable characteristic identification apparatus and no-transitory machine-readable storage medium are also provided.
Abstract:
Some embodiments are associated with an X-ray source configured to generate X-rays directed toward an object, wherein the X-ray source is to: (i) generate a first energy X-ray pulse, (ii) switch to generate a second energy X-ray pulse, and (iii) switch back to generate another first energy X-ray pulse. A detector may be associated with multiple image pixels, and the detector includes, for each pixel: an X-ray sensitive element to receive X-rays; a first storage element and associated switch to capture information associated with the first energy X-ray pulses; and a second storage element and associated switch to capture information associated with the second energy X-ray pulse. A controller may synchronize the X-ray source and detector.
Abstract:
An optical imaging lens includes: a first, second, third and fourth lens element, the first lens element has negative refractive power, the second lens element has an image-side surface with a concave part in a vicinity of the optical axis, the third lens element has positive refractive power, and has an object-side surface with a convex part in a vicinity of the optical axis, the fourth lens element has an image-side surface with a concave part in a vicinity of the optical axis, where the optical imaging lens set does not include any lens element with refractive power other than said first, second, third and fourth lens elements.
Abstract:
An optical imaging lens includes: a first, second, third, fourth and fifth lens element, the first lens element has an object-side surface with a convex part in a vicinity of the optical axis and a convex part in a vicinity of its periphery; the second lens element has an object-side surface with a convex part in a vicinity of its periphery; the third lens element has positive refractive power, having an object-side surface with a concave part in a vicinity of its periphery; the fourth lens element has positive refractive power, having an object-side surface with a concave part in a vicinity of its periphery and an image-side surface with a convex part in a vicinity of the optical axis; the fifth lens element has an image-side surface with a concave part in a vicinity of the optical axis and a convex part in a vicinity of its periphery.
Abstract:
Technology for device discovery using a device-to-device (D2D) sounding reference signal (SRS) and device discovery using D2D SRS in a channel measurement group (CMG) is disclosed. In an example, a user equipment (UE) configured for device discovery via a node using the D2D SRS can include a transceiver module. The transceiver module can send a radio resource control (RRC) device discovery request to a node, scan D2D SRS subframes of proximity UEs using D2D SRS triggering, and send feedback to the node of detected D2D SRS information of the proximity UEs. The proximity UE can be located within a same cell as the UE.
Abstract:
A signal transmission method for a USB interface and an apparatus thereof are provided. The method includes: receiving a first USB signal sent from a sending terminal, processing the first USB signal into a USB-like signal, and transmitting the USB-like signal via a networking cable; receiving the USB-like signal, processing the USB-like signal into a second USB signal, and sending the second USB signal to a receiving terminal. According to the embodiments of the present invention, the first USB signal is processed into a USB-like signal which is similar to the USB signal, the USB-like signal is transmitted via a networking cable, and the USB-like signal is processed into a second USB signal. The transmission process does not require converting the USB signal into a networking-cable signal which is to be transmitted via a networking cable, thereby avoiding conversion between protocols, and simplifying the entire transmission process.