Abstract:
According to one embodiment, a liquid crystal display device includes scanning and video signal lines, pixel electrodes and first and second common electrodes. The pixel electrodes include first and second pixel electrodes with linear electrodes and connection portion. In the first pixel electrodes, the linear electrodes overlap the first common electrode, and the connection portion overlaps first slit between the first and second common electrodes. In the second pixel electrodes, the linear electrodes overlap the second common electrode, and the connection portion overlaps second slit between the second and first common electrodes. Different potentials are applied to the first and second common electrodes.
Abstract:
According to an aspect, a display device includes: an image display unit in which pixels each including a plurality of sub-pixels are arranged in a matrix, the sub-pixels displaying a plurality of color components; and a signal processing unit that performs color conversion on an input video signal and outputs the resultant signal to a drive circuit that controls drive of the image display unit. The signal processing unit performs color conversion on first color information so as to increase luminance within an allowance range of a change in at least one of a hue and saturation, to generate second color information, the first color information being composed of three primary colors of red, green, and blue and derived based on the input video signal.
Abstract:
According to an aspect, a display device includes: a display unit including a plurality of pixels; and an image processor configured to generate an image signal for displaying an image on the display unit. When the image processor causes the display unit to display the image such that a first pixel region that displays a first color is adjacent to a second pixel region that displays a second color and that has luminance higher than luminance of the first color, the image processor applies gain to an image signal corresponding to a pixel in the second pixel region to make brightness of the second pixel region lower than brightness of the first pixel region.
Abstract:
A display device includes an image display panel and a control unit that outputs an output signal to the image display panel and causes an image to be displayed. The control unit includes an input signal acquisition unit that acquires a correction input signal including a control input signal in which a part of data is input signal data including information of an input signal value for causing a pixel to display a predetermined color, and another part of data is a display control code, a processing content determination unit that determine processing content for processing the input signal data to generate an output signal value of the output signal based on the display control code, and an output signal generation unit that generates the output signal based on the processing content determined by the processing content determination unit and the input signal data.
Abstract:
According to an aspect, a display device includes: a plurality of pixels arranged at positions corresponding to coordinates in a row and a column directions; and a plurality of sub-pixels arranged among the pixels. The pixels and the sub-pixels are arranged in a staggered manner. Each of colors of the sub-pixels is any of a first primary color, a second primary color, and a third primary color. The sub-pixels are arranged so that a sub-pixel of the first primary color, a sub-pixel of the second primary color, and a sub-pixel of the third primary color are adjacent to each of the pixels. Each of colors of the pixels is a high luminance color having higher luminance than that of the colors of the sub-pixels.
Abstract:
The display device includes an image display unit including pixels each including first to third sub-pixels and a fourth sub-pixel for displaying an additional color component according to an amount of lighting of a self-emitting element; a conversion processing unit that performs, for all of pixels, an image analysis on first color information for display at a predetermined pixel, and if a predicted value of power consumption as a total amount of lighting of self-emitting elements is above a limit, outputs a second input signal through a color conversion process on a first input signal including the first color information at a color conversion rate associated with the predicted value; and a fourth sub-pixel signal processing unit that outputs, to the image display unit, a third input signal including third color information with converted red, green, blue, and additional color components.
Abstract:
An input device includes a first substrate, a first light-emitting element unit, and a third electrode unit. The first substrate has a first surface and a second surface. The first light-emitting element includes a first electrode unit formed on the second surface, a second electrode unit formed in a layer different from that of the first electrode unit, and a luminescent layer electrically in contact with at least a part of the first electrode unit and a part of the second electrode unit, and formed between the first electrode unit and the second electrode unit. The third electrode unit is insulated from the first electrode unit and detects a change in an electric field between the first electrode unit and the third electrode unit depending on coordinates of a proximity object present at a position overlapping with the first surface in planar view.
Abstract:
An input device includes a first substrate, a light-emitting element, and a third electrode unit. The first substrate has first and second surfaces. The light-emitting element unit includes: a first conductive electrode unit including first conductive layers; a second conductive electrode unit including second conductive layers each having a size overlapping with the first conductive layer in planar view; and luminescent layers conducted with at least a part of the first electrode unit, each provided between the first and second electrode units and conducted with the first conductive layer and the second conductive layer overlapping with the first conductive layer in planar view. The third electrode unit is insulated from the first conductive layers and detects a change in an electric field between the first conductive layers and the third electrode unit depending on coordinates of a proximity object at a position overlapping with the first surface in planar view.
Abstract:
According to one embodiment, a display device includes a plurality of pixels arranged in a matrix on a substrate, each including a luminescent element and a drive transistor configured to supply current to the luminescent element for light emission, and a panel characteristics correction unit configured to correct for display a video signal supplied from outside, to be supplied to a respective one of the pixels, and the panel characteristics correction unit includes an EL characteristics correction unit configured to correct the video signal with inverse luminescent characteristics of the luminescent element, and a TFT characteristics correction unit configured to correct the video signal with inverse drive characteristics of the drive transistor.
Abstract:
A liquid crystal display device including a plurality of sub pixel regions is provided. The device includes first and second substrates with a liquid crystal layer interposed therebetween; a first electrode formed on the liquid crystal layer side of the first substrate; a second electrode formed nearer the liquid crystal layer side than the first electrode with an insulating film interposed therebetween and having a plurality of linear portions in a region overlapping with the first electrode in plan view, a third electrode having a plurality of linear portions formed on the liquid crystal layer side of the second substrate, the linear portions of the third electrode not overlapping with the linear portions of the second electrode in plan view and have portions formed along the linear portions of the second electrode, and wherein the electric fields are generated between the second electrode and the third electrode and between the second electrode and the first electrode.