摘要:
Taggants can be incorporated into or onto value documents. The taggants comprise a crystalline taggant doped with two rare earth ions. The substrate or printed matter into which the taggant can be incorporated has a minimal absorption infrared wavelength window and the taggant is excited by incident infrared radiation in this wavelength range. Suitable first rare earth ions function as efficient broad band absorbers of incident infrared radiation and passes energy non-radiatively to a second rare earth ion, which emits infrared radiation at a wavelength greater than the incident infrared radiation. The emitted infrared radiation is also in the minimal absorption transmission window of the printed matter or the substrate into which the taggant is incorporated. Methods of authenticating the value document include detection of the emitted radiation at pre-determined values.
摘要:
Cascading phosphors are described herein that produce emissions when they are excited by incident radiation. The cascading phosphors can be applied to articles, and can be useful in authenticating the article. The cascading phosphors include a host and at least three active ions.
摘要:
Value documents or other articles having authentication features, authentication apparatuses, and methods of authentication are provided that relate to the use of taggants that absorb radiation from an illumination source and emit radiation in a manner that has a maximum intensity occurring a duration of time after the illumination source has been switched off. The taggants include a crystalline composition comprising a host crystal lattice doped with a first rare earth active ion, and in some examples a second rare earth active ion.
摘要:
Cascading phosphors are described herein that produce emissions when they are excited by incident radiation. The cascading phosphors can be applied to articles, and can be useful in authenticating the article. The cascading phosphors include a host and at least three active ions.
摘要:
A value document authentication system comprising a value document substrate having a luminescent compound disposed on or in at least a portion of the value document substrate, wherein the luminescent compound (i) comprises a host lattice having at least one metallic ion with magnetic properties and is doped with at least one rare earth ion capable of emitting infrared radiation with at least one distinct infrared wavelength when excited with an exciting light source having sufficient energy to excite emission from the luminescent compound and (ii) has a pre-determined ratio of metallic ions to rare earth ions such that the ratio corresponds to a parameter of a pre-selected decision criteria, both of which properties are measured at the same location on the value document and used to authenticate the value document.
摘要:
Phosphor compositions are provided that can be incorporated into or onto plastic substrates as covert security features. The plastic substrates can be transparent and the phosphor compositions have a refractive index that effectively matches the refractive index of the plastic substrate to maintain the transparency. The phosphor compositions have absorption in the infrared, thus enabling excitation and detection of the compositions with an infrared emitting source.
摘要:
Embodiments include articles, authentication methods and apparatus, and article manufacturing methods. An article includes a substrate with a first luminescent taggant, and an extrinsic feature with a second luminescent taggant, which is positioned proximate a portion of the article surface. The first and second taggants produce emissions in overlapping emission bands as a result of exposure to excitation energy. Above the extrinsic feature, the substrate and extrinsic feature emissions combine in the overlapping emission band to produce “confounded” emissions that are distinguishable from the substrate emissions taken alone. An authentication system determines whether, in a region corresponding to a “substrate-only” region of an authentic article, emissions having first emission characteristics are detected in the overlapping emission band. The system also determines whether, in a region corresponding to an “extrinsic feature” region of an authentic article, the confounded emissions are detected in the overlapping emission band.
摘要:
Value documents or other articles having authentication features, authentication apparatuses, and methods of authentication are provided that relate to the use of taggants that absorb radiation from an illumination source and emit radiation in a manner that has a maximum intensity occurring a duration of time after the illumination source has been switched off. The taggants include a crystalline composition comprising a host crystal lattice doped with a first rare earth active ion, and in some examples a second rare earth active ion.
摘要:
Taggants can be incorporated into or onto value documents. The taggants comprise a crystalline taggant doped with two rare earth ions. The substrate or printed matter into which the taggant can be incorporated has a minimal absorption infrared wavelength window and the taggant is excited by incident infrared radiation in this wavelength range. Suitable first rare earth ions function as efficient broad band absorbers of incident infrared radiation and passes energy non-radiatively to a second rare earth ion, which the emits infrared radiation at a wavelength greater than the incident infrared radiation. The emitted infrared radiation is also in the minimal absorption transmission window of the printed matter or the substrate into which the taggant is incorporated. Methods of authenticating the value document include detection of the emitted radiation at pre-determined values.
摘要:
A value document authentication apparatus and system that includes value document substrates having a uniform distribution of one or more phosphors that emit infrared radiation in one or more wavelengths, which can be measured at the same location on the value document that is illuminated by a phosphor exciting light source when the document passes the light source with a uniform velocity. The illumination and measurement locations on the value document can be offset. The measured infrared radiation as a series of overlapped measurements along a pre-selected track in the value document represents an intensity profile, which can be normalized after removing high variations. The normalized intensity profile of a test value document can be compared with normalized intensity profile from valid reference documents to authenticate the test value document.