摘要:
Disclosed herein is a cooling system for a battery pack that is usable as a power source of electric vehicles and hybrid-electric vehicles. The cooling system has the effect of effectively dissipating heat generated from battery cells by supplying a refrigerant to the battery cells at a constant flow rate, and of minimizing a temperature difference between the battery cells during a cooling process. This prevents degradation in the performance of the battery cells, and achieves optimal temperature control. Also, the cooling system employs a single refrigerant guide member arranged at a side of the battery pack, resulting in a reduction in the size of an overall battery system.
摘要:
A member for measurement of cell voltage and temperature in a battery pack comprises temperature measuring elements (a) attached to the surfaces of unit cells, and a printed circuit board (b) having protrusions formed at the upper end thereof such that the protrusions are connected to electrode lead connection members that connect electrode leads of the unit cells, connection parts formed at the lower part thereof for allowing the temperature measuring elements to be attached to the printed circuit board, and a circuit through which electric current for voltage measurement of the unit cells and electric current for temperature measurement of the temperature measuring elements flow.
摘要:
A process for controlling temperature of a battery pack includes operating a fan to change a battery temperature to an optimal range of temperature (Topt) when a condition is satisfied that the battery temperature is equal to or greater than a maximum acceptable temperature (Tmax) or when the battery temperature is equal to or less than a minimum acceptable temperature (Tmin) and, at the same time, when the difference between a battery temperature (Tbat) and an air temperature (Tair) of air is equal to or greater than a critical temperature (Tct), and operating the fan to change the battery temperature to an optimal range of temperature variation (Topt1) of each unit cell when the battery temperature does not satisfy the condition, and a temperature variation (Tvar) of each unit cell is equal to or greater than a predetermined critical temperature (Tcrt1). According to the present invention, the operation of the fan is minimized, and therefore, optimal battery operation is accomplished while unnecessary power consumption is reduced. Furthermore, the temperature deviation between the unit cells is reduced, and therefore, the operation of the overall battery system is optimized.
摘要:
Disclosed herein is a secondary battery module constructed approximately in a rectangular parallelepiped structure. The battery module includes a pair of side members (right and left side members) having pluralities of grooves formed at the inside surfaces thereof such that the sides of unit cells are securely fitted in the grooves and at least one connection member integrally formed with the side members such that the side members are spaced apart from each other by the width of the unit cells while the grooves of the side members face each other. A medium- or large-sized battery system is manufactured using one or more secondary battery module. The secondary battery module allows a plurality of unit cells to be mounted in the battery module with high density. Consequently, the total size of the battery system can be considerably reduced, and the electrical connection between the electrodes is highly stable. Furthermore, a risk of an engineer or a user being exposed to the electrical short-circuits is minimized, and a risk of electrical short-circuits due to external forces is greatly reduced.
摘要:
A battery cartridge includes a pair of outer frame members for receiving unit cells and an inner frame member disposed between the outer frame members. The unit cells are mounted between the outer and inner frame members. The inner frame member has a plurality of through-holes, which communicate with the outside while the unit cells are mounted between the outer and inner frame members. An opened type battery module includes such a battery cartridge. The battery cartridge and the battery module have a high structural integration and mechanical strength. Consequently, the present invention has the effect of minimizing the size of a battery system, stably mounting unit cells having low mechanical strength, and effectively removing heat from the unit cells.
摘要:
Disclosed herein is a battery module for medium- or large-sized battery packs, including a plurality of unit cells, wherein the unit cells are generally plate-shaped unit cells, and the unit cells are electrically connected with each other while the unit cells are arranged in a module case so as to constitute at least two rows and at least two columns. According to the present invention, integration of the battery module is highly improved. Especially, the vertical-direction mechanical strength of the battery module is further increased, and the number of connecting members necessary for the electrical connection between the unit cells is reduced.
摘要:
Disclosed are apparatus and method for discharging a voltage in a battery pack. The apparatus comprises a discharge resistance connected to a discharge target battery of plural batteries in the battery pack and discharging a voltage of the discharge target battery; a switching section for connecting the discharge target battery and the discharge resistance; a voltage measuring section for measuring a voltage of the discharge target battery; and a control section for controlling the switching section depending on the measured voltage value of the battery so as to maintain an energy consumed in the discharge resistance to be constant. The method comprises measuring a voltage of a discharge target battery of plural batteries in the battery pack; calculating a PWM duty rate of a switching section connecting the discharge target battery and a discharge resistance using the measured voltage value and a value of the discharge resistance; and controlling the switching section depending on the duty rate to maintain an energy consumed in the discharge resistance to be constant.
摘要:
Disclosed is a method and apparatus of estimating a state of health (SOH) of a battery using internal resistance, which has been found to act as a parameter exerting the greatest influence on the SOH of the battery. The method comprises the steps of: storing an SOH estimation table constructing SOH values corresponding to various values of internal resistance according to temperature and a state of charge (SOC) in a memory; performing measurement of the temperature and estimation of the SOC of the battery when a request is made to estimate the SOH; detecting the internal resistance value of the battery; and reading the SOH values corresponding to the measured temperature, the estimated SOC of the battery, and the detected internal resistance value of the battery from the SOH estimation table.
摘要:
Disclosed are an apparatus and a method for accurately estimating a state of charge of a battery, which can measure a change of temperature and an open circuit voltage so as to estimate the state of charge at an initial time when a vehicle is not driven, and while measuring a decrement in a capacity of a battery according to charging and discharging of the battery when the vehicle is driven. The method includes the steps of: measuring a temperature in an initial estimation of the state of charge; measuring an open circuit voltage; obtaining parameters indicating a change of the open circuit voltage according to a change of temperature; and calculating the state of charge using the parameters and the open circuit voltage which is measured depending on the obtained parameters. The method further includes the steps of: measuring electric current in order to integrate the electric current during an estimation of the state of charge after initial time; calculating a decrement in capacity of the battery according to cycles; and estimating the state of charge by dividing a value, which is obtained by integrating electric current, by the decrement in the capacity of the battery according to the cycles.
摘要:
Disclosed is a method of estimating a maximum output of a battery for a hybrid electric vehicle (HEV). The method comprises steps of: extracting maximum charge/discharge outputs of the battery depending on a plurality of charged states (SOC) of the battery under which the vehicle is able to be driven and calculating an interrelation between them; extracting maximum charge/discharge outputs of the battery at plural temperatures under which the vehicle is able to be driven, and calculating an interrelation between them; extracting degradations of outputs of the battery as a capacity of the battery is discharged during the traveling, and calculating an interrelation between them; and based on the interrelations obtained from each of the steps, estimating a maximum output (Powermax) of the battery through a following function. Power max = F ( SOC , temp , accumulated discharge Ah ) = F ( SOC , temp ) ⨯ F ( accumlated discharge Ah )