摘要:
Wordline driving circuit of semiconductor memory device includes a bias generator configured to generate a threshold bias voltage for accessing data, an over-driver configured to increase the threshold bias voltage at an initial stage of a data accessing operation and a wordline driver configured to activate a wordline in response to the threshold bias voltage and a signal output from the over-driver.
摘要:
A semiconductor memory device includes: a data transferrer configured to transfer data; a main driver configured to apply the data to the data transferrer in response to a control signal; and a pre-driver configured to decrease a voltage level of the data transferrer when the voltage level of the data transferrer is higher than a logic threshold voltage, and to increase the voltage level of the data transferrer when the voltage level of the data transferrer is lower than the logic threshold voltage prior to activation of the control signal.
摘要:
A semiconductor memory device is capable of reducing a test time upon the same condition of the actual operation thereof. The semiconductor memory device includes an output data select unit and a data output unit. The output data select unit selectively outputs valid data, which are loaded on a plurality of global lines, in response to an output control signal activated after a delay time corresponding to an additive latency from entry of a read operation in a test mode. The data output unit aligns data outputted from the output data select unit and outputs the aligned data through data pads.
摘要:
A multi-port memory device having a plurality of ports performing a serial input/output (I/O) communication with external devices, and a plurality of banks performing a parallel I/O communication with the ports through a plurality of global I/O lines. The multi-port memory device includes: a write clock generating unit for generating a write clock selectively toggled only while write data are applied; a write control unit for generating a write flag signal group and a write driver enable signal in response to the write clock and a write command; a data latch unit for outputting intermediate write data by storing burst write data under the control of the write flag signal group; and a write driver for receiving the intermediate write data to write final write data in a memory cell of a corresponding bank in response to the write driver enable signal and a data mask signal group.
摘要:
A semiconductor memory device includes: a data transferrer configured to transfer data; a main driver configured to apply the data to the data transferrer in response to a control signal; and a pre-driver configured to decrease a voltage level of the data transferrer when the voltage level of the data transferrer is higher than a logic threshold voltage, and to increase the voltage level of the data transferrer when the voltage level of the data transferrer is lower than the logic threshold voltage prior to activation of the control signal.
摘要:
A multi-port memory device having a plurality of ports performing a serial input/output (I/O) communication with external devices, and a plurality of banks performing a parallel I/O communication with the ports through a plurality of global I/O lines. The multi-port memory device includes: a write clock generating unit for generating a write clock selectively toggled only while write data are applied; a write control unit for generating a write flag signal group and a write driver enable signal in response to the write clock and a write command; a data latch unit for outputting intermediate write data by storing burst write data under the control of the write flag signal group; and a write driver for receiving the intermediate write data to write final write data in a memory cell of a corresponding bank in response to the write driver enable signal and a data mask signal group.
摘要:
A multi-port memory device having a plurality of ports performing a serial input/output (I/O) communication with external devices, and a plurality of banks performing a parallel I/O communication with the ports through a plurality of global I/O lines. The multi-port memory device includes: a write clock generating unit for generating a write clock selectively toggled only while write data are applied; a write control unit for generating a write flag signal group and a write driver enable signal in response to the write clock and a write command; a data latch unit for outputting intermediate write data by storing burst write data under the control of the write flag signal group; and a write driver for receiving the intermediate write data to write final write data in a memory cell of a corresponding bank in response to the write driver enable signal and a data mask signal group.
摘要:
A high voltage generator includes: a detection unit for comparing a reference voltage with a high voltage and detecting a voltage level of the high voltage; an oscillator selection unit for generating a first control signal and a second control signal in response to an output signal of the detection unit and a selection signal corresponding to a data operation mode; an oscillator for generating clock signals having different frequencies in response to the first control signal and the second control signal; and a pumping unit for generating the high voltage by performing a charge pumping operation in response to the clock signals.
摘要:
Wordline driving circuit of semiconductor memory device includes a bias generator configured to generate a threshold bias voltage for accessing data, an over-driver configured to increase the threshold bias voltage at an initial stage of a data accessing operation and a wordline driver configured to activate a wordline in response to the threshold bias voltage and a signal output from the over-driver.
摘要:
A multi-port memory device includes ports, banks, a global data bus, an input/output (I/O) controller, mode register set (MRS), a clock generator, and a test I/O controller. The I/O controller transmits a test signal to the global data bus in response to a mode register enable signal. The MRS generates a test enable signal in response to the mode register enable signal and outputs a mode selection signal which determines a data transmission mode of a test I/O signal in response to the test signal. The clock generator receives an external clock and generates an internal clock based on the external clock in response to the mode selection signal. The test I/O controller inputs/outputs the test I/O signal in synchronism with the internal clock. The mode register enable signal active during a test operation mode for testing a core area of the banks.