Abstract:
A fail-safe thermal sensor is implemented in an integrated circuit such as a microprocessor. The fail-safe thermal sensor monitors the temperature of the integrated circuit and halt logic halts operation of the integrated circuit in response to the fail-safe thermal sensor indicating that a threshold temperature has been exceeded. The threshold temperature may be a predetermined fixed critical temperature. The halt logic may inhibit operation of the integrated circuit by stopping a clock for the integrated circuit.
Abstract:
An interposer is described to regulate the current in wafer test tooling. In one example, the interposer includes a first connection pad to couple to automated test equipment and a second connection pad to couple to a device under test. The interposer further includes an overcurrent limit circuit to connect the first and second connection pads and to disconnect the first and second connection pads when the current between the first and second connection pads is over a predetermined amount.
Abstract:
A programmable thermal sensor is implemented in an integrated circuit such as a microprocessor. The programmable thermal sensor monitors the temperature of the integrated circuit, and generates an output to indicate that the temperature of the integrated circuit has attained a preprogrammed threshold temperature. In a microprocessor implementation, the microprocessor contains a processor unit, an internal register, microprogram and clock circuitry. The microprogram writes programmable input values, corresponding to threshold temperatures, to the internal register. The programmable thermal sensor reads the programmable input values, and generates an interrupt when the temperature of the microprocessor reaches the threshold temperature. In addition to a programmable thermal sensor, the microprocessor contains a fail safe thermal sensor that halts operation of the microprocessor when the temperature attains a critical temperature.
Abstract:
A programmable thermal sensor is implemented in an integrated circuit such as a microprocessor. The programmable thermal sensor monitors the temperature of the integrated circuit, and generates an output to indicate that the temperature of the integrated circuit has attained a pre-programmed threshold temperature. In a microprocessor implementation, the microprocessor contains a processor unit, an internal register, microprogram and clock circuitry. The microprogram writes programmable input values, corresponding to threshold temperatures, to the internal register. The programmable thermal sensor reads the programmable input values, and generates an interrupt when the temperature of the microprocessor reaches the threshold temperature. In addition to a programmable thermal sensor, the microprocessor contains a fail safe thermal sensor that halts operation of the microprocessor when the temperature attains a critical temperature.
Abstract:
An integrated, on-chip thermal management system providing closed-loop temperature control of an IC device and methods of performing thermal management of an IC device. The thermal management system comprises a temperature detection element, a power modulation element, a control element, and a visibility element. The temperature detection element includes a temperature sensor for detecting die temperature. The power modulation element may reduce the power consumption of an IC device by directly lowering the power consumption of the IC device, by limiting the speed at which the IC device executes instructions, by limiting the number of instructions executed by the IC device, or by a combination of these techniques. The control element allows for control over the behavior of the thermal management system, and the visibility element allows external devices to monitor the status of the thermal management system.
Abstract:
A comparator includes an amplifier that has an offset voltage that is responsive to a level of current. A current source of the comparator is configured to be selectably enabled to adjust the level of the current to change the offset voltage.
Abstract:
A programmable thermal sensor is implemented in an integrated circuit such as a microprocessor. The programmable thermal sensor monitors the temperature of the integrated circuit, and generates an output to indicate that the temperature of the integrated circuit has attained a pre-programmed threshold temperature. In a microprocessor implementation, the microprocessor contains a processor unit, an internal register, microprogram and clock circuitry. The microprogram writes programmable input values, corresponding to threshold temperatures, to the internal register. The programmable thermal sensor reads the programmable input values, and generates an interrupt when the temperature of the microprocessor reaches the threshold temperature. In addition to a programmable thermal sensor, the microprocessor contains a fail safe thermal sensor that halts operation of the microprocessor when the temperature attains a critical temperature.
Abstract:
An interposer is described to regulate the current in wafer test tooling. In one example, the interposer includes a first connection pad to couple to automated test equipment and a second connection pad to couple to a device under test. The interposer further includes an overcurrent limit circuit to connect the first and second connection pads and to disconnect the first and second connection pads when the current between the first and second connection pads is over a predetermined amount.
Abstract:
A temperature-based cooling device controller is implemented in an integrated circuit such as a microprocessor. The temperature-based cooling device controller includes a register to store a threshold temperature value, a thermal sensor, and clock adjustment logic to activate a cooling device in response to the thermal sensor indicating that the threshold temperature value has been exceeded. In a microprocessor implementation, the microprocessor contains a plurality of thermal sensors each placed in one of a plurality of different locations across the integrated circuit and an averaging mechanism to calculate an average temperature from the plurality of thermal sensors. Threshold adjustment logic increases the threshold temperature value to a new threshold temperature value in response to the thermal sensor indicating that the threshold temperature value has been exceeded. Threshold adjustment logic further lowers the new threshold temperature to detect decreases in temperature.
Abstract:
A temperature-based cooling device controller includes a register to store a threshold temperature value, a thermal sensor, and cooling activation logic to activate an active cooling device in response to an interrupt signal. The thermal sensor includes a current source, a voltage reference coupled to the current source to provide a bandgap reference voltage, wherein the bandgap reference voltage is substantially constant over a range of temperatures, programmable circuitry providing an output voltage that varies with the integrated circuit temperature and in accordance with the register value, and a comparator, wherein the comparator generates an interrupt signal if a difference between the output voltage and the bandgap reference voltage indicates that the threshold temperature has been exceeded.