Abstract:
In one embodiment, an apparatus includes a switch core that has a multi-stage switch fabric. A first set of peripheral processing devices coupled to the multi-stage switch fabric by a set of connections that have a protocol. Each peripheral processing device from the first set of peripheral processing devices is a storage node that has virtualized resources. The virtualized resources of the first set of peripheral processing devices collectively define a virtual storage resource interconnected by the switch core. A second set of peripheral processing devices coupled to the multi-stage switch fabric by a set of connections that have the protocol. Each peripheral processing device from the first set of peripheral processing devices is a compute node that has virtualized resources. The virtualized resources of the second set of peripheral processing devices collectively define a virtual compute resource interconnected by the switch core.
Abstract:
In some embodiments, a system includes a set of servers, a set of switches within a switch fabric, and an optical device. The optical device is operatively coupled to the set of servers via a first set of optical fibers. Each server from the set of servers is associated with at least one wavelength from a set of wavelengths upon connection to the optical device. The optical device is operatively coupled to each switch from a set of switches via an optical fiber from a second set of optical fibers. The optical device, when operative, wavelength demultiplexes optical signals received from each switch from the set of switches, and sends, for each wavelength from the set of wavelengths, optical signals for that wavelength to the server from the set of servers.
Abstract:
In some embodiments, an apparatus comprises a schedule module within a switch fabric system. At a first time, the schedule module is configured to access a list of status indicators associated with a group of egress port indicators. The list of status indicators includes a set of status indicators each of which has a value greater than a threshold. The schedule module is configured to randomly select a status indicator from the set of status indicators and configured to reduce the value of the selected status indicator. The schedule module is then configured to send the egress port indicator associated with the selected status indicator such that a data cell is sent from an egress port associated with that egress port indicator. At a second time, when the value of every status indicator from the list of status indicators is not greater than the threshold, the schedule module is configured to increase the value of every status indicator above the threshold.
Abstract:
A high-performance, scalable and drop-free data center switch fabric and infrastructure is described. The data center switch fabric may leverage low cost, off-the-shelf packet-based switching components (e.g., IP over Ethernet (IPoE)) and overlay forwarding technologies rather than proprietary switch fabric. In one example, host network accelerators (HNAs) are positioned between servers (e.g., virtual machines or dedicated servers) of the data center and an IPoE core network that provides point-to-point connectivity between the servers. The HNAs are hardware devices that embed virtual routers on one or more integrated circuits, where the virtual router are configured to extend the one or more virtual networks to the virtual machines and to seamlessly transport packets over the switch fabric using an overlay network. In other words, the HNAs provide hardware-based, seamless access interfaces to overlay technologies used for communicating packet flows through the core switching network of the data center.
Abstract:
An access network includes an access device having an optical interface module that outputs a plurality of pairs of optical communication signals, each of the pairs of optical communication signals comprising a modulated optical transmit signal and an unmodulated optical receive signal, each of the pairs of optical communication signals having a different wavelength. A customer premise equipment (CPE) comprises an optical interface module to receive the modulated optical transmit signal and the unmodulated optical receive signal for any of the plurality of pairs of optical communication signals. The optical interface module includes a receive module to demodulate the modulated optical transmit signal into inbound symbols and a transmit module having an optical modulator and reflective optics to modulate the unmodulated optical receive signal in accordance with a data signal and reflect a modulated optical receive signal to communicate outbound data symbols to the access device.
Abstract:
In some embodiments, an apparatus includes an optical transceiver system that includes a set of optical transmitters and a backup optical transmitter. In such embodiments, each optical transmitter from the set of optical transmitter can transmit at a unique wavelength from a set of wavelengths. The backup optical transmitter can transmit at a wavelength from the set of wavelengths when an optical transmitter from the set of optical transmitters associated with that wavelength fails. In other embodiments, an apparatus includes an optical transceiver system that includes a set of optical receivers and a backup optical receiver. The backup optical receiver can receive at a wavelength from the set of wavelengths when an optical receiver from the set of optical receivers associated with that wavelength fails.
Abstract:
Methods and devices for processing packets are provided. The processing device may Include an input interface for receiving data units containing header information of respective packets; a first module configurable to perform packet filtering based on the received data units; a second module configurable to perform traffic analysis based on the received data units; a third module configurable to perform load balancing based on the received data units; and a fourth module configurable to perform route lookups based on the received data units.
Abstract:
Subscriber management and network service integration for an access network is described in which a centralized controller provides seamless end-to-end service from a network to access nodes. For example, a method includes dynamically establishing a control channel between the centralized controller and an access node, and establishing a transport label switched path (LSP) transport network packets between the access node and the network node. The access node sends, via the control channel, an endpoint indication message that indicates that an endpoint that has joined the network at the access node. The access node receives a pseudo wire request message via the control channel to install forwarding state for creating a pseudo wire for providing one or more network services to the endpoint. The access node receives a direct switch message via the control channel to configure the access node to map traffic received from the endpoint to the pseudo wire.
Abstract:
In one embodiment, a method includes sending a configuration signal to a virtual network switch module within a control plane of a communications network. The configuration signal is configured to define a first network rule at the virtual network switch module. The method also includes configuring a packet forwarding module such that the packet forwarding module implements a second network rule, and receiving status information from the virtual network switch module and status information from the packet forwarding module. The status information is received via the control plane.
Abstract:
In one embodiment, a method includes sending a configuration signal to a virtual network switch module within a control plane of a communications network. The configuration signal is configured to define a first network rule at the virtual network switch module. The method also includes configuring a packet forwarding module such that the packet forwarding module implements a second network rule, and receiving status information from the virtual network switch module and status information from the packet forwarding module. The status information is received via the control plane.