Abstract:
In an optical network having a terrestrial terminal and an open cable interface (OCI) connecting a submarine cable to a terrestrial cable, the OCI may include a filter positioned on an optical path between the terrestrial cable and the submarine cable and configured to pass first communication signals of a first frequency band, and filter out secondary signals of a second frequency band that does not overlap with the first frequency band. The secondary signals may be looped back to the terrestrial terminal. The terrestrial terminal may detect the looped back secondary signals, and in response, determine the presence of the OCI and that the supervisory signals were rerouted by the OCI.
Abstract:
Systems, methods, and storage media for detecting a security intrusion of a network device are disclosed. Exemplary implementations may include a method involving, in the network device including a processor, monitor a light signal associated with a security enabled port of the network device; and in response to detecting a change in the light signal, initiate a security alert.
Abstract:
Time taken for resuming communication in a protection scheme using a backup path in an optical communication system including a master station device and a plurality of slave station devices is decreased. The plurality of slave station devices are connected in parallel to a looped path. A communication path between the master station device and each of the slave station device includes a normal path and a backup path. The master station device performs communication control processing for each of the slave station device based on RTT. A first slave station device is a slave station device with which communication through the normal path has become impossible. First backup path RTT of the first slave station device is calculated based on first normal path RTT of the first slave station device, first partial RTT between the master station device and the looped path, and loop propagation time necessary for one trip through the looped path. The communication control processing for the first slave station device is resumed based on the calculated first backup path RTT without measurement of the first backup path RTT when the first slave station device is sensed.
Abstract:
Systems and methods for connection validation between a pair of mated transceivers implemented in a network element include, responsive to a request for connection validation at a first transceiver of the pair of mated transceivers, performing a first optical loopback test through the first transceiver with a unique trace identifier; responsive to a successful first optical loopback test, providing the unique trace identifier to a second transceiver of the mated transceivers with a request for a second optical loopback test; performing the second optical loopback test through the second transceiver with the unique trace identifier; and, responsive to a successful second optical loopback test, providing the unique trace identifier back to the first transceiver from the second transceiver.
Abstract:
Systems and methods for achieving eye safety of an optical transceiver are provided. An optical module can be configured to output a first optical signal. A first photodetector can be configured to output a signal indicative of a presence or absence of a second optical signal. A controller can be coupled to the optical module and the first photodetector and can be configured to control the output of the optical module. In response to a determination that an output of the first photodetector indicates the second optical signal is absent, the controller can control the optical module to output the first signal at a decreased average optical power. In response to a determination that an output of the first photodetector indicates the second optical signal is present, the controller can control the optical module to output the first signal at an increased average optical power.
Abstract:
A photonics system includes a transmit photonics module and a receive photonics module. The photonics system also includes a transmit waveguide coupled to the transmit photonics module, a first optical switch integrated with the transmit waveguide, and a diagnostics waveguide optically coupled to the first optical switch. The photonics system further includes a receive waveguide coupled to the receive photonics module and a second optical switch integrated with the receive waveguide and optically coupled to the diagnostics waveguide.
Abstract:
Control and monitoring of airfield lighting from a control tower and other maintenance/supervisory locations uses double loop self healing fiber optic communications circuits to enhances speed of operation even with large and complex airfield lighting system requirements, and significantly increased reliability and operating lifetime thereof. A plurality of local light control and monitoring groups are used, wherein each group has at least one fiber optic communications concentrator that independently communicates with light controllers within the group and the remote supervisory control and monitoring systems in the control tower and other locations. This allows faster control response of the lamps in each of the airfield light fixtures, and monitoring concentration of operational data within each group. Each of the at least one fiber optic concentrators is optically coupled to double loop self healing fiber optic communications backbone circuits coupled to main and backup computer supervisory control systems for redundancy purposes.
Abstract:
Systems, methods, and devices are disclosed for monitoring optical communications between a managed location and a remote location. In particular, an optical signal is transmitted over an optical fiber and passed-through a test device. A portion of the optical signal is filtered from the original optical signal and passed to a monitoring unit. The monitoring unit may instruct one or more switches in the test device to loop the optical signal back toward the managed location. Subsequently, testing and monitoring may be performed at the managed location. The device may provide a test output or may transmit the information to the managed location.
Abstract:
Control and monitoring of airfield lighting from a control tower and other maintenance/supervisory locations uses double loop self healing fiber optic communications circuits to enhances speed of operation even with large and complex airfield lighting system requirements, and significantly increased reliability and operating lifetime thereof. A plurality of local light control and monitoring groups are used, wherein each group has at least one fiber optic communications concentrator that independently communicates with light controllers within the group and the remote supervisory control and monitoring systems in the control tower and other locations. This allows faster control response of the lamps in each of the airfield light fixtures, and monitoring concentration of operational data within each group. Each of the at least one fiber optic concentrators is optically coupled to double loop self healing fiber optic communications backbone circuits coupled to main and backup computer supervisory control systems for redundancy purposes.
Abstract:
A system and method for fault identification in optical communication networks. One or more repeaters in the system includes a loop back path that couples an output a first amplifier for amplifying signals carried in a first direction through a repeater to an input of a second amplifier for amplifying signals carried in a second direction through said repeater. Fault analysis is conducted using loop gain data associated with test signals transmitted on the first or second paths and returned on the opposite path through the loop back paths.