Abstract:
A medical system may comprise a display system and a processor. The processor may be configured to generate a computer model of a plurality of instruments. The plurality of instruments may extend through and out of a distal end of an entry guide and may include an image capturing instrument. The processor may be further configured to cause an image of the computer model to be displayed on the display system and determine from a configuration of the plurality of instruments in the computer model if an event alert threshold associated with an event has been reached. If a determination is made that the event alert threshold has been reached, an event indicator may be displayed on the display system at a portion of the image of the computer model associated with the event.
Abstract:
A medical system may comprise a display and a processor configured to determine an optimal position for an image capturing instrument to view working ends of a plurality of medical instruments when the plurality of medical instruments and the image capturing instrument are each extending out of a distal end of an entry guide. The processor may also be configured to cause the optimal position to be displayed on the display along with an image captured by the image capturing instrument of the working ends of the plurality of medical instruments.
Abstract:
A medical system comprises an entry guide, a display, and a processor. The processor may be configured to receive state information for an articulatable image capture device controllably extendable out of a distal end of the entry guide. The processor may be configured to generate a view including a graphical representation of a distal end portion of the articulatable image capture device as determined from the received state information and a graphical representation of a field of view of the articulatable image capture device extending distally from the distal end portion of the articulatable image capture device. The processor may also cause the view to be displayed on the display.
Abstract:
Methods, systems, and apparatuses for controlling surgical systems. In one aspect, a method includes obtaining, at a control subsystem associated with a surgical system, hardware configuration information from a first patient side subsystem that is communicatively coupled to and controlled by the control subsystem; determining a software version to be used by the control subsystem and the first patient side subsystem, wherein determining the software version includes selecting the software version from among a plurality of software versions, and wherein each software version of the plurality of software versions is associated with a particular patient side subsystem; instructing the first patient side subsystem to use the software version; determining whether the software version is currently loaded on the control subsystem; in response to determining that the software version is not currently loaded on the control subsystem, loading the software version on the control subsystem; and initializing the surgical system.
Abstract:
A medical robotic system includes an entry guide with surgical tools and a camera extending out of its distal end. To supplement the view provided by an image captured by the camera, an auxiliary view including articulatable arms of the surgical tools and/or camera is generated from sensed or otherwise determined information about their positions and orientations are displayed along with indications of range of motion limitations on a display screen from the perspective of a specified viewing point.
Abstract:
A medical robotic system includes an entry guide with surgical tools and a camera extending out of its distal end. To supplement the view provided by an image captured by the camera, an auxiliary view including articulatable arms of the surgical tools and/or camera is generated from sensed or otherwise determined information about their positions and orientations and displayed on a display screen from the perspective of a specified viewing point. Intuitive control is provided to an operator with respect to the auxiliary view while the operator controls the positioning and orienting of the camera.
Abstract:
Systems and methods for remotely controlling a system using video are provided. A method in accordance the present disclosure includes detecting a video signal of an auxiliary system at a video input, wherein the video signal including images encoded with control information. The method also includes determining that the images included in the video signal include the control information. The method further includes extracting the control information from the images. Additionally, the method includes modifying operations of the system based on the control information.
Abstract:
A computer-assisted medical device is configured and used to endoluminally navigate to a location in the gastrointestinal system and there treat certain body lumen wall areas while avoiding other body lumen wall areas. Embodiments ablate the inner mucosal layer and sub-mucosal nerve plexus of the stomach, duodenum and jejunum to effect treatment of insulin resistance and metabolic disorders, such as Type II diabetes (T2D), polycystic ovarian syndrome (PCOS), non-alcoholic steatohepatitis (NASH), non-alcoholic fatty liver disease (NAFLD), congestive heart failure (CHF) and obstructive sleep apnea (OSA). Various sensors are used to assist a clinical operator to navigate from the mouth through the pyloric sphincter and into and through the duodenum and/or jejunum. Various sensors are used to map and identify portions of the duodenum and/or jejunum. Various lumen wall ablation devices and methods are described. Various post-treatment assessments are described.
Abstract:
A robotic system has a plurality of user selectable operating modes. To select one of the operating modes, a user performs a distinguishing action which uniquely identifies a desired operating mode among the plurality of user selectable operating modes. A method implemented by a processor in the robotic system identifies the distinguishing action and places the robotic system in the user selected operating mode.
Abstract:
A medical robotic system includes an entry guide with surgical tools and a camera extending out of its distal end. To supplement the view provided by an image captured by the camera, an auxiliary view including articulatable arms of the surgical tools and/or camera is generated from sensed or otherwise determined information about their positions and orientations and displayed on a display screen from the perspective of a specified viewing point.