Abstract:
Embodiments of the invention relate to supporting transaction data committed to a stable storage. Committed data in the cluster is stored in the persistent cache layer and replicated and stored in the cache layer of one or more secondary nodes. One copy is designated as a master copy and all other copies are designated as replica, with an exclusive write lock assigned to the master and a shared write lock extended to the replica. An acknowledgement of receiving the data is communicated following confirmation that the data has been replicated to each node designated to receive the replica. Managers and a director are provided to support management of the master copy and the replicas within the file system, including invalidation of replicas, fault tolerance associated with failure of a node holding a master copy, recovery from a failed node, recovered of the file system from a power failure, and transferring master and replica copies within the file system.
Abstract:
Embodiments of the invention relate to supporting transaction data committed to a stable storage. Committed data in the cluster is stored in the persistent cache layer and replicated and stored in the cache layer of one or more secondary nodes. One copy is designated as a master copy and all other copies are designated as replica, with an exclusive write lock assigned to the master and a shared write lock extended to the replica. An acknowledgement of receiving the data is communicated following confirmation that the data has been replicated to each node designated to receive the replica. Managers and a director are provided to support management of the master copy and the replicas within the file system, including invalidation of replicas, fault tolerance associated with failure of a node holding a master copy, recovery from a failed node, recovered of the file system from a power failure, and transferring master and replica copies within the file system.
Abstract:
Embodiments of the invention relate to supporting transaction data committed to a stable storage. Committed data in the cluster is stored in the persistent cache layer and replicated and stored in the cache layer of one or more secondary nodes. One copy is designated as a master copy and all other copies are designated as replica, with an exclusive write lock assigned to the master and a shared write lock extended to the replica. An acknowledgement of receiving the data is communicated following confirmation that the data has been replicated to each node designated to receive the replica. Managers and a director are provided to support management of the master copy and the replicas within the file system, including invalidation of replicas, fault tolerance associated with failure of a node holding a master copy, recovery from a failed node, recovered of the file system from a power failure, and transferring master and replica copies within the file system.
Abstract:
A sensor system comprises: an energy storage device electrically coupled to an intermittent energy release device that causes the energy storage device to release stored energy intermittently; a sensor electrically coupled to the energy storage device, where the sensor detects physical events occurring at a physical device and is intermittently powered by electrical energy received from the energy storage device; a synaptic neural network core electrically coupled to the sensor, where the synaptic neural network core converts sensor readings into an object that describes the physical events occurring at the physical device; a transponder electrically coupled to the synaptic neural network core; and a storage buffer within the transponder, where the storage buffer stores the object for transmission from the transponder to a monitoring system, where the intermittent energy release device provides power to the sensor in response to the transponder transmitting the object to the monitoring system.
Abstract:
A sensor system comprises: an energy storage device; an intermittent energy release device electrically coupled to the energy storage device, wherein the intermittent energy release device causes the energy storage device to release stored energy intermittently; a sensor electrically coupled to the energy storage device; a register electrically coupled to the sensor, wherein the register stores readings from the sensor; a synaptic neural network core electrically coupled to the sensor, wherein the synaptic neural network core converts the readings from the sensor into a synthetic context-based object that is derived from the readings and a context object; a transponder electrically coupled to the synaptic neural network core; and a storage buffer within the transponder, wherein the storage buffer stores the synthetic context-based object for transmission by the transponder to a monitoring system.
Abstract:
A sensor system comprises: an energy storage device; an intermittent energy release device electrically coupled to the energy storage device, wherein the intermittent energy release device causes the energy storage device to release stored energy intermittently; a sensor electrically coupled to the energy storage device; a register electrically coupled to the sensor, wherein the register stores readings from the sensor; a synaptic neural network core electrically coupled to the sensor, wherein the synaptic neural network core converts the readings from the sensor into a synthetic context-based object that is derived from the readings and a context object; a transponder electrically coupled to the synaptic neural network core; and a storage buffer within the transponder, wherein the storage buffer stores the synthetic context-based object for transmission by the transponder to a monitoring system.
Abstract:
Embodiments of the invention are directed to reducing write amplification in a cache with flash memory used as a write cache. An embodiment of the invention includes partitioning at least one flash memory device in the cache into a plurality of logical partitions. Each of the plurality of logical partitions is a logical subdivision of one of the at least one flash memory device and comprises a plurality of memory pages. Data are buffered in a buffer. The data includes data to be cached, and data to be destaged from the cache to a storage subsystem. Data to be cached are written from the buffer to the at least one flash memory device. A processor coupled to the buffer is provided with access to the data written to the at least one flash memory device from the buffer, and a location of the data written to the at least one flash memory device within the plurality of logical partitions. The data written to the at least one flash memory device are destaged from the buffer to the storage subsystem.
Abstract:
Maintaining high availability of objects for both read and write transactions. Secondary copies of cached objects are created and maintained on disks of a secondary caching node and in remote data storage. In response to an update request, the secondary copies of cached objects are updated. Secondary cached objects are synchronously invalidated in response to the update request, and the update is asynchronously propagated to a secondary caching node.
Abstract:
Embodiments relate to supporting transaction data committed to a stable storage. Committed data in the cluster is stored in the persistent cache layer and replicated and stored in the cache layer of one or more secondary nodes. One copy is designated as a master copy and all other copies are designated as replica, with an exclusive write lock assigned to the master and a shared write lock extended to the replica. An acknowledgement of receiving the data is communicated following confirmation that the data has been replicated to each node designated to receive the replica. Managers and a director are provided to support management of the master copy and the replicas within the file system, including invalidation of replicas, fault tolerance associated with failure of a node holding a master copy, recovery from a failed node, recovered of the file system from a power failure, and transferring master and replica copies within the file system.
Abstract:
A sensor system comprises: an energy storage device electrically coupled to an intermittent energy release device that causes the energy storage device to release stored energy intermittently; a sensor electrically coupled to the energy storage device, where the sensor detects physical events occurring at a physical device and is intermittently powered by electrical energy received from the energy storage device; a synaptic neural network core electrically coupled to the sensor, where the synaptic neural network core converts sensor readings into an object that describes the physical events occurring at the physical device; a transponder electrically coupled to the synaptic neural network core; and a storage buffer within the transponder, where the storage buffer stores the object for transmission from the transponder to a monitoring system, where the intermittent energy release device provides power to the sensor in response to the transponder transmitting the object to the monitoring system.