Abstract:
Described is an apparatus which comprises: a first voltage regulator (VR) having a reference input node; and a first multiplexer to provide a reference voltage to the reference input node and operable to select one of at least two different reference voltages as the reference voltage.
Abstract:
A method and apparatus (e.g., semiconductor device) for setting voltages (e.g., guardbands) using “in situ,” or on-die, silicon measurements are described. In one embodiment the semiconductor device comprises: a process monitor to measure silicon parameters of the semiconductor device; and a controller coupled to the process monitor to set a voltage for use on at least a portion of the semiconductor device based on silicon process monitor measurements.
Abstract:
Technologies for efficiently providing reliable compute operations for mission critical applications include a reliability management system. The reliability management system includes circuitry configured to obtain conclusion data indicative of a conclusion made by each of two or fewer compute devices of a host system. The conclusion data from each compute device pertains to the same operation. Additionally, the circuitry is configured to identify whether an error has occurred in the operation of each compute device, determine, in response to a determination that an error has occurred, a severity of the error, and cause the host system to perform a responsive action as a function of the determined severity of the error.
Abstract:
Techniques of debugging a computing system are described herein. The techniques may include an apparatus having an all-in-one port. The all-in-one port may include a configuration channel and a sideband channel. The sideband channel is configured to default to a debug mode when the configuration channel is not communicatively coupled to an external device.
Abstract:
An integrated circuit (IC) device configured for multiple return material authorizations (RMAs) is provided. The IC device includes an asset and a return material authorization (RMA) counter fuse including a first fuse, a second fuse, and a third fuse. The IC device enters an RMA state in response to blowing the first fuse, a second state in response to blowing the second fuse, and the RMA state in response to blowing the third fuse.
Abstract:
Existing multi-wire debugging protocols, such as 4-wire JTAG, 2-wire cJTAG, or ARM SWD, are run through a serial wireless link by providing the debugger and the target device with hardware interfaces that include UARTs and conversion bridges. The debugger interface serializes outgoing control signals and de-serializes returning data. The target interface de-serializes incoming control signals and serializes outgoing data. The actions of the interfaces are transparent to the inner workings of the devices, allowing re-use of existing debugging software. Compression, signal combining, and other optional enhancements increase debugging speed and flexibility while wirelessly accessing target devices that may be too small, too difficult to reach, or too seal-dependent for a wired connection.
Abstract:
Techniques and mechanisms to exchange test, debug or trace (TDT) information via a general purpose input/output (I/O) interface. In an embodiment, an I/O interface of a device is coupled to an external TDT unit, wherein the I/O interface is compatible with an interconnect standard that supports communication of data other than any test information, debug information or trace information. One or more circuit components reside on the device or are otherwise coupled to the external TDT unit via the I/O interface. Information exchanged via the I/O interface is generated by, or results in, the performance of one or more TDT operations to evaluate the one or more circuit components. In another embodiment, the glue logic of the device interfaces the I/O interface with a test access point that is coupled between the one or more circuit components and the I/O interface.
Abstract:
Technologies for efficiently providing reliable compute operations for mission critical applications include a reliability management system. The reliability management system includes circuitry configured to obtain conclusion data indicative of a conclusion made by each of two or fewer compute devices of a host system. The conclusion data from each compute device pertains to the same operation. Additionally, the circuitry is configured to identify whether an error has occurred in the operation of each compute device, determine, in response to a determination that an error has occurred, a severity of the error, and cause the host system to perform a responsive action as a function of the determined severity of the error.
Abstract:
Described is an apparatus which comprises: a first voltage regulator (VR) having a reference input node; and a first multiplexer to provide a reference voltage to the reference input node and operable to select one of at least two different reference voltages as the reference voltage.
Abstract:
Techniques and mechanisms to exchange test, debug or trace (TDT) information via a general purpose input/output (I/O) interface. In an embodiment, an I/O interface of a device is coupled to an external TDT unit, wherein the I/O interface is compatible with an interconnect standard that supports communication of data other than any test information, debug information or trace information. One or more circuit components reside on the device or are otherwise coupled to the external TDT unit via the I/O interface. Information exchanged via the I/O interface is generated by, or results in, the performance of one or more TDT operations to evaluate the one or more circuit components. In another embodiment, the glue logic of the device interfaces the I/O interface with a test access point that is coupled between the one or more circuit components and the I/O interface.