Abstract:
Various embodiments describe an integrated circuit. The integrated circuit includes at least seven planar field effect transistors provided in a common substrate next to one another with a maximum feature size in accordance with a technology node of a maximum of 65 nm. Each field effect transistor of the at least seven planar field effect transistors includes a first source/drain diffusion region, a second source/drain diffusion region, a channel region between the drain diffusion region and the source diffusion region, and a gate terminal. Each field effect transistor of the at least seven planar field effect transistors includes at least one common source/drain diffusion region with another field effect transistor of the at least seven planar field effect transistors. The common source/drain diffusion regions are free of vertical terminal contact material.
Abstract:
In various embodiments, a circuit arrangement is provided. The circuit arrangement may include a detection circuit, which is designed to detect light attacks on the circuit arrangement; a processing circuit, which is designed to initiate a current flow through a line for each light attack detected by the detection circuit; and a control circuit, which is designed to enable functioning of a component of the circuit arrangement depending on the conducting state of the line.
Abstract:
A chip is described including a semiconductor layer including doped regions; a metallization layer on the semiconductor layer and at least one cell row including p-channel field effect transistors and n-channel field effect transistors, wherein the doped regions form source regions and drain regions of the p-channel field effect transistors and the n-channel field effect transistors; contacts extending from the source regions, the drain regions and gate regions of the p-channel field effect transistors and the n-channel field effect transistors to the metallization layer, wherein the metallization layer is structured in accordance with a metallization grid such that the p-channel field effect transistors and the n-channel field effect transistors are connected to form one or more logic gates.
Abstract:
A method for reconstructing a first vector from a second vector includes: storing code for the row vectors according to a first code and a second code; correcting the row vectors of the second vector corresponding to the first vector so that the row vectors of the second vector have the same code as the row vectors of the first vector; calculating the code of the column vectors of the second vector according to the second code; comparing the code of the row vectors of the second vector with the code of the column vectors of the first vector; identifying the columns in which the first vector is unequal to the second vector; the rows in which the first vector is unequal to the second vector; and the components in which the first vector is not equal to the second vector, and correcting the components of the second vector.
Abstract:
According to an embodiment, a circuit is described comprising a plurality of flip-flops, a control circuit configured to provide a control signal to each flip-flop of the plurality of flip-flops and an integrity checking circuit connected to the control circuit and to the plurality of flip-flops configured to check whether the flip-flops receive the control signal as provided by the control circuit.
Abstract:
According to one embodiment, a chip has a circuit with at least one p channel field effect transistor (FET); at least one n channel FET; a first and a second power supply terminal; wherein the n channel FET, if supplied with the upper supply potential at its gate, supplies the lower supply potential to the gate of the p channel FET; and the p channel FET, if supplied with the lower supply potential at its gate, supplies the upper supply potential to the gate of the n channel FET; wherein the logic state of the gate of the p channel FET and of the n channel FET can only be changed by at least one of the first and second supply voltage to the circuit; and a connection coupled to the gate of the p channel FET or the n channel FET and a further component of the semiconductor chip.
Abstract:
According to various embodiments, an integrated circuit is described comprising a plurality of subcircuits having different signal transfer reaction times, a control circuit configured to form two competing paths from the plurality of subcircuits in response to a control signal, an input circuit configured to supply an input signal to the two competing paths and an output circuit configured to generate an output value depending on which of the competing paths has transferred the input signal with shorter reaction time.
Abstract:
A delay circuit includes an electronic transmission element with a first input and a first output. The first input is coupled to the first output by two first switches wired in parallel. The first switches each have a control input, a second input and a second output. The second input is coupled to the second output by two second switches wired in parallel. The circuit further includes an input circuit to receive an input signal and feed the input signal to one of the transmission element inputs and feed the inverted input signal to the other of the transmission element inputs, and an output circuit. The output circuit is configured such that the output signal only changes in the case of a change in the input signal if the change in the input signal has brought about a change both at the first output and at the second output.
Abstract:
According to an embodiment, a programmable logic circuit is described comprising a first data bit input to receive a first data bit a and a second data bit input to receive a second data bit b, a first program bit input to receive a first program bit p1, a second program bit input to receive a second program bit p2, a third program bit input to receive a third program bit p3 and a fourth program bit to receive a fourth program bit p4 and an output configured to output ( ( ( a ⋀ b ) ⋁ ( p 1 ⋀ a ) ⋁ ( p 2 ⋀ b ) ) _ ⋀ ( p 3 ⋁ b ⋁ a ) ) ⋁ ( a ⋀ b ⋀ p 4 ) _ .
Abstract:
A zero detection circuit includes a chain of masked OR circuits. Each masked OR circuit includes data inputs. Each data input is configured to receive a respective data input bit. Each masked OR circuit further includes an input mask input to receive one or more input masking bits, an output mask input to receive an output masking bit and a data output. The zero detection circuit is configured to output a bit equal to an OR combination, masked with the output masking bit, of the data input bits, each demasked with an input masking bit of the one or more input masking bits. One of the inputs of each masked OR circuit except the first masked OR circuit of the chain of masked OR circuits is coupled to the data output of the masked OR circuit preceding the masked OR circuit in the chain of masked OR circuits.