摘要:
A mold structure having high-precision multi-dimensional components includes: depositing an oxide layer on a top surface of a plurality of semiconductor substrates, patterning a design integrated in one or more of the oxide layers; repositioning the substrates to enable the oxide layers make contact with one another; bonding in sequential order the repositioned substrates using a dielectric bonding, forming a three dimension (3D) mold; filling the 3D mold with filling material and removing the overburden filling material present on a top surface of the component.
摘要:
A mold structure having high-precision multi-dimensional components includes: depositing an oxide layer on a top surface of a plurality of semiconductor substrates, patterning a design integrated in one or more of the oxide layers; repositioning the substrates to enable the oxide layers make contact with one another; bonding in sequential order the repositioned substrates using a dielectric bonding, forming a three dimension (3D) mold; filling the 3D mold with filling material and removing the overburden filling material present on a top surface of the component.
摘要:
A mold structure having high-precision multi-dimensional components which includes a first oxide layer superimposed on a top of a first semiconductor substrate; a second oxide layer superimposed on a top of a second semiconductor substrate; integrated designs patterned in at least one of the oxide layers; and the first and second semiconductor substrates bonded to one another into a three dimensional (3D) mold such that the first oxide layer only makes partial contact with the second oxide layer such that a portion of the first oxide layer avoids contact with the second oxide layer, the portion of the first oxide layer directly opposite a surface portion of the second semiconductor substrate that is free of the second oxide, the 3D mold selectively filled with a filling material to form a molded high-precision multi-dimensional component.
摘要:
A mold structure having high-precision multi-dimensional components which includes a first oxide layer superimposed on a top of a first semiconductor substrate; a second oxide layer superimposed on a top of a second semiconductor substrate; integrated designs patterned in at least one of the oxide layers; and the first and second semiconductor substrates bonded to one another into a three dimensional (3D) mold such that the first oxide layer only makes partial contact with the second oxide layer such that a portion of the first oxide layer avoids contact with the second oxide layer, the portion of the first oxide layer directly opposite a surface portion of the second semiconductor substrate that is free of the second oxide, the 3D mold selectively filled with a filling material to form a molded high-precision multi-dimensional component.
摘要:
A reusable mold comprising a flexible bulk metallic glass mold insert comprising one or more mold cavities removably coupled to a support mold and a method of making the reusable mold. The support mold is removable from the flexible bulk metallic glass mold insert without macroscopic elastic flexing or deforming of the support mold. The reusable mold may be used for molding one or more bulk metallic glass parts and the one or more molded bulk metallic glass parts may be released from the flexible bulk metallic glass mold insert by elastically flexing the flexible mold insert.
摘要:
In one embodiment, the invention provides a process for thermoplastic forming of a metallic glass. For example, in one embodiment, the invention provides a process for thermoplastic forming of a metallic glass ribbons having a thickness of between about 50 to about 200 microns. Related articles of manufacture and processes for customizing articles in accordance with the process as described herein are also provided.
摘要:
The present invention relates to materials, methods and apparatuses for performing imprint lithography using amorphous metallic materials. The amorphous metallic materials can be employed as imprint media and thermoplastic forming processes are applied during the pattern transfer procedure to produce micron scale and nanoscale patterns in the amorphous metallic layer. The pattern transfer is in the form of direct mask embossing or through a serial nano-indentation process. A rewriting process is also disclosed, which involves an erasing mechanism that is accomplished by means of a second thermoplastic forming process. The amorphous metallic materials may also be used directly as an embossing mold in imprint lithography to allow high volume imprint nano-manufacturing. This invention also comprises of a method of smoothening surfaces under the action of the surface tension alone.
摘要:
This invention describes a method and hardware of how to deform metallic glasses under low force and stabilized conditions to fabricate thin and large area metallic glass sheets. It is based on a combination of thermoplastic rolling and stretching and typically combined with a pre-heating method. The predominant mode of deformation is dependent on the BMG conditions such as thickness, viscosity, and crystallization time.
摘要:
An article comprising a bulk metallic glass skin having one or more functional features integrated therein is described and a method of forming the same is described. The one or more functional features exhibit a variation in stiffness between the one or more functional features and the bulk metallic glass skin that is defined by an applied force over an achieved deformation. The stiffness of each of the one or more functional features is at least 1000 times less than an average stiffness of the bulk metallic glass skin.
摘要:
A method of joining a bulk metallic glass to a second similar or dissimilar material in an air environment. The method includes the steps of: a) removing an oxide layer on at least a portion of a surface of a first bulk metallic glass during thermoplastic forming of the first bulk metallic glass in a supercooled liquid region, wherein the removing of the oxide layer on the at least the portion of the surface creates a fresh surface that is at least substantially free of oxides and/or contaminants; and b) joining the fresh surface of the first bulk metallic glass to a second material.