Abstract:
An oxide etch process is described which may be used for emitter and base preparation in bipolar SiGe devices. The low temperature process employed produces electrical insulation between the emitter and base by a COR etch which preserves insulating TEOS glass. The insulating TEOS glass provides reduced capacitance and helps to achieve high speed. An apparatus is also described for practicing the disclosed process.
Abstract:
A process for manufacturing an FET device. A semiconductor substrate is covered with a gate dielectric layer and with a conductive gate electrode formed over the gate dielectric. Blanket layers of silicon oxide may be added. An optional collar of silicon nitride may be formed over the silicon oxide layer around the gate electrode. Two precleaning steps are performed. Chemical oxide removal gases are then deposited, covering the device with an adsorbed reactant film. The gate dielectric (aside from the gate electrode) is removed, as the adsorbed reactant film reacts with the gate dielectric layer to form a rounded corner of silicon oxide at the base of the gate electrode. One or two in-situ doped silicon layers are deposited over the source/drain regions to form single or laminated epitaxial raised source/drain regions over the substrate protruding beyond the surface of the gate dielectric.
Abstract:
The present invention provides a unique device structure and method that provides increased transistor performance in integrated bipolar circuit devices. The preferred embodiment of the present invention provides improved high speed performance by providing reduced base resistence. The preferred design forms the extrinsic base by diffusing dopants from a dopant source layer and into the extrinsic base region. This diffusion of dopants forms at least a portion of the extrinsic base. In particular, the portion adjacent to the intrinsic base region is formed by diffusion. This solution avoids the problems caused by traditional solutions that implanted the extrinsic base. Specifically, by forming at least a portion of the extrinsic base by diffusion, the problem of damage to base region is minimized. This reduced damage enhances dopant diffusion into the intrinsic base. Additionally, the formed extrinsic base can have improved resistence, resulting in an improved maximum frequency for the bipolar device. Additionally, the extrinsic base can be formed with a self-aligned manufacturing process that reduces fabrication complexity.
Abstract:
A method and apparatus are provided for forming a silicide on a semiconductor substrate by integrating under a constant vacuum the processes of removing an oxide from a surface of a semiconductor substrate and depositing a metal on the cleaned surface without exposing the cleaned surface to air. The method and apparatus of the present invention eliminates the exposure of the cleaned substrate to air between the oxide removal and metal deposition steps. This in-situ cleaning of the silicon substrate prior to cobalt deposition provides a cleaner silicon substrate surface, resulting in enhanced formation of cobalt silicide when the cobalt layer is annealed.