摘要:
Device and process for converting a feedstock of aromatic compounds, in which the feedstock is notably treated using a fractionation train (4-7), a xylenes separating unit (10) and an isomerization unit (11), and in which a pyrolysis unit (13) treats a second hydrocarbon-based feedstock, produces a pyrolysis effluent feeding the feedstock, and produces a pyrolysis gas comprising CO, CO2 and H2; a WGS water gas shift reaction section (50) suitable for treating the pyrolysis gas and for producing a WGS gas enriched in CO2 and in hydrogen; a CO2 aromatization reaction section (52) suitable for: at least partly treating the WGS gas to produce a hydrocarbon effluent comprising aromatic compounds, and feeding the feedstock with the hydrocarbon effluent.
摘要:
The present invention relates to zeolite adsorbents based on agglomerated zeolite X crystals comprising barium, potassium and sodium. These adsorbents find applications in the separation of aromatic C8 isomer fractions and especially xylene.
摘要:
The present invention relates to zeolitic adsorbents based on small agglomerated crystals of zeolite X comprising barium, combining optimum properties in terms of selectivity and of mechanical strength.These adsorbents have applications in the separation of fractions of aromatic C8 isomers and in particular xylenes, in the separation of substituted toluene isomers, such as nitrotoluene, diethyltoluene or toluenediamine, in the separation of cresols and in the separation of polyhydric alcohols, such as sugars.
摘要:
Provided is a hybrid process for producing high-purity para-xylene from a feedstock of aromatic hydrocarbon isomer fractions having 8 carbon atoms, in a liquid phase. The process includes a liquid chromatography separation step and a crystallization step of the para-xylene from the purified stream of para-xylene obtained at the separation step.
摘要:
The present invention describes a process for the simulated moving bed separation of xylenes which can be used for the treatment of paraxylene-rich feeds (more than 25% by weight of paraxylene), in which the operating conditions are optimized by means of a specific relationship between the cycle time and the desorbant flow rate.
摘要:
This invention describes a process for separation of xylenes for the purpose of the production of high-purity metaxylene, a simulated countercurrent process using at least one adsorber with a limited cumulative total level (Hcu) of adsorbent at a surface velocity (Vsl) that is less than 2 cm/s.
摘要:
The invention relates to a pretreatment process for improving the filling of a chamber with solid particles, in which said solid particles are mixed before loading of said solid particles into the chamber with at least one lubricant that is solid at ambient temperature chosen from saturated fatty acids having 14 or more carbon atoms, metal salts of saturated fatty acids having 14 or more carbon atoms, esters of fatty acids having 14 or more carbon atoms, fatty alcohols having 14 or more carbon atoms, linear N-alkanes having 16 or more carbon atoms in solid form, fumaric acid, talc, sodium stearoyl fumarate, the lubricant being introduced at a content of between 0.01% and 1% relative to the total weight of the mixture of solid particles and lubricant. The invention also relates to the use of the process for the pretreatment of particles of adsorbents for the separation of xylenes.
摘要:
Provided is a hybrid process for producing high-purity para-xylene from a feedstock of aromatic hydrocarbon isomer fractions having 8 carbon atoms, in a liquid phase. The process includes a liquid chromatography separation step and a crystallization step of the para-xylene from the purified stream of para-xylene obtained at the separation step.
摘要:
The present invention relates to zeolite adsorbents based on agglomerated zeolite X crystals comprising barium, potassium and sodium. These adsorbents find applications in the separation of aromatic C8 isomer fractions and especially xylene.
摘要:
The present invention describes a process for the simulated moving bed separation of xylenes, in which the operating conditions are optimized by means of a specific relationship between the cycle time and the flow rate of the desorbant.