Abstract:
A system for controlling an inverter may include a motor; then inverter including a plurality of switching elements turned on/off by a pulse width modulation signal, converting DC power into AC power according to on/off of the plurality of switching elements and providing the AC power to the motor; a current sensor for detecting and outputting a current provided to the motor; a rotation angle sensor for detecting and outputting a rotor angle of the motor; and a controller for performing duty determination control for determining a duty of the pulse width modulation signal on the basis of values detected by the current sensor and the rotation angle sensor and a torque command of the motor.
Abstract:
A charging power supplying system using a motor driving system includes an inverter that is connected to a battery, includes at least one switching device, and is configured to change an on/off state of the switching device and to convert power stored in the battery to output the converted power to an output terminal of the inverter, a motor including a plurality of coils that each receive power provided from the output terminal of the inverter, a charging power output terminal that is connected to a neutral point to which the plurality of coils of the motor is commonly connected and outputs current output from the neutral point to an external charging target, and a controller configured to control the switching device in the inverter based on current of the output terminal of the inverter.
Abstract:
An apparatus for controlling a charging system using a motor-driving system is configured to suppress the occurrence of torque in a motor when a battery is charged by receiving the supply of external charging current to a neutral point of the motor.
Abstract:
A charging system using a motor driving system, the motor driving system including: a battery and an inverter, the inverter configured to receive and convert a direct current (DC) power stored in the battery into a three-phase alternating current (AC) power and to output the three-phase AC power to a motor when the motor is driven and the motor configured to generate a rotation force using the three-phase AC power output from the inverter, the charging system includes a controller configured to control the inverter to boost a voltage at a neutral point of the motor and to output the boosted voltage to the battery by determining duty values of switching elements in the inverter when an external charging current is provided to the neutral point of the motor.
Abstract:
A charging system using a motor driving system including a battery, an inverter configured to receive and convert DC power stored in the battery into three-phase AC power and to output the three-phase AC power to a motor when the motor is driven and the motor configured to generate rotation force using the three-phase AC power output from the inverter, may include a controller configured to control the inverter to boost a voltage of a neutral point of the motor and to output the boosted voltage to the battery, by determining duty values of switching elements in the inverter when external charging current is provided to the neutral point of the motor.
Abstract:
A power control system for a hybrid vehicle is provided. The system includes a high-voltage battery that is capable of being charged or discharged, a first motor and a second motor, a first inverter connected to the first motor, and a second inverter connected to the second motor. Additionally, a converter has a first side connected to the battery and a second side connected in parallel to the first inverter and the second inverter and a diode is connected in parallel to both sides of the converter. A controller is configured to operate the converter and the first and second inverters to cause electric power of the high-voltage battery to be bypassed via the diode and directly supplied to the first inverter or the second inverter.
Abstract:
A method for measuring an offset of a resolver is arranged so as to frequently measure and correct the offset of the resolver by actively performing zero current control of a motor. The method includes steps of: determining whether a torque command value of the motor and a magnetic flux value or reverse magnetic flux value of the motor respectively fall within a first range and a second range, which have been set in advance; controlling the motor to perform zero current control for a preset time period when the torque command value of the motor falls within the first range and the magnetic flux value or reverse magnetic flux value of the motor falls within the second range; and measuring the offset of the resolver for the preset time period.
Abstract:
A power control system for a hybrid vehicle is provided. The system includes a high-voltage battery that is capable of being charged or discharged, a first motor and a second motor, a first inverter connected to the first motor, and a second inverter connected to the second motor. Additionally, a converter has a first side connected to the battery and a second side connected in parallel to the first inverter and the second inverter and a diode is connected in parallel to both sides of the converter. A controller is configured to operate the converter and the first and second inverters to cause electric power of the high-voltage battery to be bypassed via the diode and directly supplied to the first inverter or the second inverter.
Abstract:
A device and a method of 6-step controlling of an inverter of a motor driving system are provided. The device and method and apply a voltage to a motor by adopting a 6-step control scheme capable of maximally using an input voltage of the inverter to improve output efficiency of the inverter and the motor and thus improve fuel efficiency of an environmentally friendly vehicle.
Abstract:
An apparatus for controlling an inverter driving a motor is provided. The apparatus includes a current controller that generates a voltage instruction for causing a current detection value, obtained by measuring a current provided from an inverter to a motor, to correspond to a current instruction for driving the motor. A voltage modulator generates a pulse width modulation signal for controlling on/off states of switching devices in the inverter at a predetermined switching frequency based on the voltage instruction. A frequency determiner determines the switching frequency based on driving information of the motor, determines a plurality of synchronization frequencies based on a speed of the motor, and randomly selects and determines one of the plurality of synchronization frequencies as the switching frequency.