摘要:
An electrochemical cell includes a housing; a solid electrolyte dividing the housing into a first electrode chamber and a second electrode chamber; a first electrode material accommodated in the first electrode chamber; a second electrode material accommodated in the second electrode chamber; a current collector extending in a first direction in the first electrode chamber; an extended current collector unit extending from the current collector in a second direction; and an electron channel unit on at least one of the current collector and the extended current collector unit.
摘要:
A solid electrolyte is disclosed. The solid electrolyte includes a main portion that includes β-alumina or β″-alumina, and an edge portion integrally provided with the main portion. The edge portion has a mixed portion that includes α-alumina and includes β alumina or β″-alumina. A concentration gradient of the α-alumina in the edge portion decreases in a first direction from the edge portion to the main portion.
摘要:
A solid electrolyte is disclosed. The solid electrolyte includes a main portion that includes β-alumina or β″-alumina, and an edge portion integrally provided with the main portion. The edge portion has a mixed portion that includes α-alumina and includes β alumina or β″-alumina. A concentration gradient of the α-alumina in the edge portion decreases in a first direction from the edge portion to the main portion.
摘要:
An electrode structure and an electrochemical cell including the electrode structure are provided. The electrode structure includes a porous three-dimensional (3D) outer net including an interconnected plurality of outer metal lines that define a plurality of outer holes between adjacent ones of the outer metal lines. The outer metal lines include a porous 3D inner net, a first layer coating the inner net, and a second layer coating the first layer. The inner net includes an interconnected plurality of inner metal lines that define a plurality of inner holes between adjacent ones of the inner metal lines. The inner metal lines include a first metal. The first layer includes a second metal. The second layer includes a third metal.
摘要:
An electrochemical battery including: a housing; a pouch-shaped solid electrolyte disposed in the housing and having an open end; an insulator that is disposed on the open end of the solid electrolyte to cover the open end and includes a plurality of protrusions facing the open end of the solid electrolyte; at least two types of sealants disposed between the solid electrolyte and the insulator and having different glass transition temperatures, respectively; a first electrode material disposed inside the pouch-shaped solid electrolyte; and a second electrode material disposed outside the pouch-shaped solid electrolyte.
摘要:
An electrode structure and an electrochemical cell including the electrode structure are provided. The electrode structure includes a porous three-dimensional (3D) outer net including an interconnected plurality of outer metal lines that define a plurality of outer holes between adjacent ones of the outer metal lines. The outer metal lines include a porous 3D inner net, a first layer coating the inner net, and a second layer coating the first layer. The inner net includes an interconnected plurality of inner metal lines that define a plurality of inner holes between adjacent ones of the inner metal lines. The inner metal lines include a first metal. The first layer includes a second metal. The second layer includes a third metal.
摘要:
An electrochemical cell is disclosed. In one embodiment, the cell includes i) a housing comprising first, second and third chambers, wherein the first chamber is interposed between the second and third chambers, ii) a first separator spatially separating the first and second chambers and iii) a second separator spatially separating the first and third chambers.
摘要:
A method of manufacturing opaque electrodes of a plasma display panel includes providing a mold plate having plating grooves corresponding to patterns of the opaque electrodes of the plasma display panel, forming first plating layers in the plating grooves, transferring the first plating layers to display electrodes on a substrate and removing the mold plate, leaving the first plating layers on the display electrodes. There may be adhesive between the display electrodes and the first plating layer. There may be a second plating layer between the display electrode and the first plating layer.
摘要:
A photosensitive paste composition is provided. The photosensitive paste composition contains conductive powder, an inorganic binder, and an organic vehicle, wherein, assuming that 10% by weight of the particles consisting the conductive powder have a diameter less than D10 and 90% by weight of the particles have a diameter greater than D90, a difference between D10 and D90 is about 2.0 μm or less. The photosensitive paste composition solves problems arising with use of conductive powder having a broad particle diameter distribution and satisfy requirements for an electrode's main characteristics, such as resistance, the anti-sanding property of terminal portions, and withstanding voltage characteristic. In addition, a PDP electrode using the photosensitive paste composition and a PDP including the PDP electrode can be manufactured.
摘要:
The present invention provides a cold cathode electron source and a method for manufacturing the cold cathode electron source. The cold cathode electron source includes a substrate on which are deposited a catalyst metal layer, an insulation layer, and a gate metal layer; a cavity section formed through the catalyst metal layer, the insulation layer, and the gate metal layer; and an emitter realized through a plurality of carbon nanotubes, which are grown from walls of the catalyst metal layer exposed in the cavity section and which have long axes parallel to the substrate. The method includes depositing a catalyst metal layer, an insulation layer, and a gate metal layer on a substrate; forming a cavity section by removing a portion of the gate metal layer, the insulation layer, and the catalyst metal layer using a photolithography process; and forming an emitter by mounting the substrate on a chemical vapor deposition reactor and growing carbon nanotubes in a low temperature atmosphere of 500˜800 degrees Celsius (° C.).