Abstract:
Embodiments of the present invention provide a control channel resource transmission method including: obtaining, by a user equipment, a configuration parameter in a candidate control channel set according to a preset protocol and/or higher-layer signaling sent by a base station, where the higher-layer signaling is used to notify the configuration parameter; determining an antenna port according to the obtained configuration parameter; receiving, by using the antenna port, a control channel or a control channel element sent by the base station; and determining, by the base station, the antenna port according to the same configuration parameter as that of the user equipment, and sending, by using the antenna port, the control channel or the control channel element to the user equipment. The embodiments of the present invention are applicable to control channel resource transmission.
Abstract:
This application provides an enhanced physical downlink control channel transmission method and apparatus. The method includes: in a physical resource block set, separately arranging first resource groups in each physical resource block pair PRB pair, where the first resource groups are enhanced resource element groups eREGs or REGs, and the physical resource block set includes at least one of the physical resource block pairs; numbering second resource groups according to a correspondence between the first resource groups and the second resource groups in the physical resource block set, where the second resource groups are control channel element eCCE groups or control channel candidates; determining numbers of the second resource groups for transmitting an E-PDCCH; and mapping, according to the determined numbers, the E-PDCCH to the corresponding first resource groups for transmission. The technical solution of this application resolves an E-PDCCH transmission problem.
Abstract:
Embodiments of the present invention provide a control channel resource transmission method including: obtaining, by a user equipment, a configuration parameter in a candidate control channel set according to a preset protocol and/or higher-layer signaling sent by a base station, where the higher-layer signaling is used to notify the configuration parameter; determining an antenna port according to the obtained configuration parameter; receiving, by using the antenna port, a control channel or a control channel element sent by the base station; and determining, by the base station, the antenna port according to the same configuration parameter as that of the user equipment, and sending, by using the antenna port, the control channel or the control channel element to the user equipment. The embodiments of the present invention are applicable to control channel resource transmission.
Abstract:
A precoding processing method and user equipment are disclosed. The precoding processing method includes: selecting a codebook vector for performing precoding processing for data among a codebook set of Nt antennas, where the codebook set includes a first codebook vector [ A B ] of a uniform linear array and a second codebook vector [ A - B ] generated according to the first codebook vector, where A is a (Nt/)×1 vector composed of a first half of elements of the first codebook vector, B is a (Nt/2)×1 vector composed of a last half of elements of the first codebook vector, and Nt is a positive even number; and sending an index number of the codebook vector to a base station, whereupon the base station uses the codebook vector corresponding to the index number to perform precoding processing for the data to be transmitted by the antennas. Embodiments of the present invention make the codebook set compatible with two types of antenna configuration modes.
Abstract:
This application provides an enhanced physical downlink control channel transmission method and apparatus. The method includes: in a physical resource block set, separately arranging first resource groups in each physical resource block pair PRB pair, where the first resource groups are enhanced resource element groups eREGs or REGs, and the physical resource block set includes at least one of the physical resource block pairs; numbering second resource groups according to a correspondence between the first resource groups and the second resource groups in the physical resource block set, where the second resource groups are control channel element eCCE groups or control channel candidates; determining numbers of the second resource groups for transmitting an E-PDCCH; and mapping, according to the determined numbers, the E-PDCCH to the corresponding first resource groups for transmission. The technical solution of this application resolves an E-PDCCH transmission problem.
Abstract:
This application provides an enhanced physical downlink control channel transmission method and apparatus. The method includes: in a physical resource block set, separately arranging first resource groups in each physical resource block pair PRB pair, where the first resource groups are enhanced resource element groups eREGs or REGs, and the physical resource block set includes at least one of the physical resource block pairs; numbering second resource groups according to a correspondence between the first resource groups and the second resource groups in the physical resource block set, where the second resource groups are control channel element eCCE groups or control channel candidates; determining numbers of the second resource groups for transmitting an E-PDCCH; and mapping, according to the determined numbers, the E-PDCCH to the corresponding first resource groups for transmission. The technical solution of this application resolves an E-PDCCH transmission problem.
Abstract:
Embodiments of the present invention provide a control channel resource transmission method, a base station and a user equipment which can ensure balance between performance of E-CCEs on a resource set, and further ensure scheduling and receiving performance of the E-CCEs. A control channel resource transmission method includes: mapping, by a base station, more than one enhanced control channel element E-CCE onto a resource set, where each E-CCE is mapped onto a corresponding first resource subset and a corresponding second resource subset respectively, so that each E-CCE occupies a resource of the same size or a difference between sizes of resources occupied by the E-CCEs is less than a preset threshold, where the E-CCEs are carried on the resource set for transmission; and transmitting the resource set that carries the E-CCEs to a user equipment; and demodulating, by the user equipment, the resource set and performing receiving.
Abstract:
Methods and apparatus are provided for transmitting downlink control information in mobile communications system. A size of a downlink control information (DCI) format associated with an uplink transmission mode is determined and then compared with a size of a DCI format corresponding to a current downlink transmission mode. If the size of the DCI format associated with the uplink transmission mode is same as the size of the DCI format corresponding to the current downlink transmission mode, a bit is appended to the DCI format associated with the uplink transmission mode to differentiate the size of the DCI format associated with the uplink transmission mode from the size of the DCI format corresponding to the current downlink transmission mode.
Abstract:
This application provides an enhanced physical downlink control channel transmission method and apparatus. The method includes: in a physical resource block set, separately arranging first resource groups in each physical resource block pair PRB pair, where the first resource groups are resource element groups eREGs or REGs, and the physical resource block set includes at least one of the physical resource block pairs; numbering second resource groups according to a correspondence between the first resource groups and the second resource groups in the physical resource block set, where the second resource groups are control channel element eCCE groups or control channel candidates; determining numbers of the second resource groups for transmitting an E-PDCCH; and mapping, according to the determined numbers, the E-PDCCH to the corresponding first resource groups for transmission. The technical solution of this application resolves an E-PDCCH transmission problem.