Abstract:
A control device for a vessel, the control device comprises: an operation monitoring unit configured to monitor presence or absence of a supply of first electric power supplied from a power supply to an operation display unit for operating the vessel; a drive monitoring unit configured to monitor presence or absence of a supply of second electric power supplied from the power supply to a drive source of the vessel; and a caution control unit configured to cause a caution output device to output a caution based on information indicating the presence or the absence of the supplies of the first electric power and the second electric power that have been respectively acquired from the operation monitoring unit and the drive monitoring unit.
Abstract:
An outboard motor that has an actuator and a gear change mechanism. The outboard motor also comprises an operation position sensor that detects the operation position of an operation part, a shift position detection unit that detects the actual shift position of the gear shift mechanism, an actuator detection unit that detects the state of the actuator, and a control device. The control device performs failure determination or drive control of the actuator on the basis of at least two pieces of the detected information.
Abstract:
An outboard motor is provided with: an encoder which detects the rotational speed of an engine; a position sensor which detects an operating position of a shift lever; and a state quantity detection unit which detects a state quantity of a shift actuator. A control device of the outboard motor determines whether the state quantity is more than or equal to a stop-initiating threshold value when the operating position has been switched. If the state quantity is more than or equal to the stop-initiating threshold value, the control device implements a stop control to stop ignition and/or fuel injection in the engine.
Abstract:
In the ignition device for the battery-less engine, a transistor-type ignition control circuit of the engine including a manual starting device is actuated by using output of the generator driven by the engine, and a primary winding of an ignition coil is powered from the ignition control circuit. In the ignition control circuit, a primary powering time period for powering the primary winding from the ignition control circuit is set shorter than a predetermined time period while an engine speed of the engine is within a low engine speed range below a predetermined engine speed, whereas the primary powering time period is set equal to or longer than the predetermined time period while the engine speed of the engine is within a high engine speed range at and above the predetermined engine speed.
Abstract:
A shift device for an outboard motor includes a forward gear and a reverse gear; a clutch gear; a shift actuator configured to move between a neutral reference position where the clutch gear is disengaged from the forward gear and the reverse gear and an engagement reference position where the clutch gear is engaged with the forward gear or the reverse gear; and a control device configured to control a movement of the shift actuator. The control device is configured to set an intermediate target position, and to set a speed at which the shift actuator moves from the intermediate target position to the engagement reference position slower than a speed at which the shift actuator moves from the neutral reference position to the intermediate target position.
Abstract:
In an apparatus for detecting tip-over of a rammer equipped with a crankcase accommodating an output shaft rotatably connected to an engine, a movable unit accommodating a converter mechanism for converting rotation of the output shaft to vertical motion of a movable member, a tamping shoe connected to the movable unit, and a handle operable by an user, and adapted to thrust upward in the gravitational direction by the vertical motion of the movable member and go into a free fall to compact a ground surface, it is determined whether a detected engine speed becomes equal to or smaller than a threshold value set lower than an engine idling speed when the engine has been operated at a rammer working speed set greater than the engine idling speed, and if it does, it is discriminated that the rammer has tipped over.
Abstract:
In the ignition device for the battery-less engine, a transistor-type ignition control circuit of the engine including a manual starting device is actuated by using output of the generator driven by the engine, and a primary winding of an ignition coil is powered from the ignition control circuit. In the ignition control circuit, a primary powering time period for powering the primary winding from the ignition control circuit is set shorter than a predetermined time period while an engine speed of the engine is within a low engine speed range below a predetermined engine speed, whereas the primary powering time period is set equal to or longer than the predetermined time period while the engine speed of the engine is within a high engine speed range at and above the predetermined engine speed.
Abstract:
An outboard motor is provided with: an encoder which detects the rotational speed of an engine; a position sensor which detects an operating position of a shift lever; and a state quantity detection unit which detects a state quantity of a shift actuator. A control device of the outboard motor determines whether the state quantity is more than or equal to a stop-initiating threshold value when the operating position has been switched. If the state quantity is more than or equal to the stop-initiating threshold value, the control device implements a stop control to stop ignition and/or fuel injection in the engine.
Abstract:
An outboard motor that has an actuator and a gear change mechanism. The outboard motor also comprises an operation position sensor that detects the operation position of an operation part, a shift position detection unit that detects the actual shift position of the gear shift mechanism, an actuator detection unit that detects the state of the actuator, and a control device. The control device performs failure determination or drive control of the actuator on the basis of at least two pieces of the detected information.
Abstract:
In an apparatus for detecting tip-over of a rammer equipped with a crankcase accommodating an output shaft rotatably connected to an engine, a movable unit accommodating a converter mechanism for converting rotation of the output shaft to vertical motion of a movable member, a tamping shoe connected to the movable unit, and a handle operable by an user, and adapted to thrust upward in the gravitational direction by the vertical motion of the movable member and go into a free fall to compact a ground surface, it is determined whether a detected engine speed becomes equal to or smaller than a threshold value set lower than an engine idling speed when the engine has been operated at a rammer working speed set greater than the engine idling speed, and if it does, it is discriminated that the rammer has tipped over.