Abstract:
A rotary kiln includes: a cylindrical shell that includes a supply-side end portion and a discharge-side end portion at both ends in an axial direction of the shell, and a heat treatment chamber which is defined inside the shell and in which a heat treatment is performed on a process material; a supply-side holder that holds the supply-side end portion; a discharge-side holder that holds the discharge-side end portion; a supply-side rotary shaft that allows rotation of the supply-side holder; and a discharge-side rotary shaft that allows rotation of the discharge-side holder. The shell is rotated about its own axis by rotating at least one of the supply-side rotary shaft and the discharge-side rotary shaft.
Abstract:
A rotary kiln includes a cylindrical shell that rotates about its own axis and that has a heat treatment chamber provided radially inward of the shell. In the rotary kiln, a heat treatment is performed on a process material in the heat treatment chamber to manufacture a battery material. The shell is made of a carbon material. Since the shell is made of a carbon material, the rotary kiln can suppress contamination of metal scale, which adversely affects the battery material, into the battery material.
Abstract:
A rotary kiln includes a cylindrical shell that rotates about its own axis and that has a heat treatment chamber provided radially inward of the shell. In the rotary kiln, a heat treatment is performed on a process material in the heat treatment chamber to manufacture a battery material. The shell is made of a carbon material. Since the shell is made of a carbon material, the rotary kiln can suppress contamination of metal scale, which adversely affects the battery material, into the battery material.
Abstract:
A rotary kiln includes: a cylindrical shell that includes a supply-side end portion and a discharge-side end portion at both ends in an axial direction of the shell, and a heat treatment chamber which is defined inside the shell and in which a heat treatment is performed on a process material; a supply-side holder that holds the supply-side end portion; a discharge-side holder that holds the discharge-side end portion; a supply-side rotary shaft that allows rotation of the supply-side holder; and a discharge-side rotary shaft that allows rotation of the discharge-side holder. The shell is rotated about its own axis by rotating at least one of the supply-side rotary shaft and the discharge-side rotary shaft.
Abstract:
A display control device of the present invention includes a gamma circuit producing and outputting a gray scale voltage and a selection drive circuit selecting the gray scale voltage on the basis of a pixel data displayed on a display device and outputting the selected gray scale voltage as a pixel driving signal to the display device. The selection drive circuit includes an analog memory and holds the selected gray scale voltage in the analog memory.
Abstract:
A bump bonding apparatus and method in which a ball 6 is formed on the tip end of a wire 4 by an electric discharge between the wire 4 and a discharge electrode 3, and a bump 8 is formed by joining this ball 6 to the pad 2 of a semiconductor chip 1. In cases where the position of the capillary 5, when the capillary 5 is lowered following the next ball formation and the tip end portion of the wire (ball 6 or stripped bump) comes into contact with the electrode pad 2 drops below the lower limit of the permissible error range of the ball contacting level (first detected position H1) of the capillary 5 at a time when a normally formed ball 6, comes into contact with the electrode pad 2, a bump non-adhesion signal is outputted, and the bonding operation is stopped.
Abstract:
A liquid crystal drive circuit for AC-driving a liquid crystal panel, the liquid crystal drive circuit being constituted of a switched capacitor type D/A converter having a sample period and a hold period, the liquid crystal drive circuit comprising a differential operational amplifier 204, a first reference voltage input terminal 200 connected to one input terminal of the differential operational amplifier, a first capacitor group 205 connected to the other input terminal of the differential operational amplifier, for dividing second and third reference voltages 201 and 202, a second capacitor group 206 connected between an output terminal and the other input terminal of the differential operational amplifier, and switch means 207 to 218 for changing a connection condition of the first capacitor group and the second capacitor group to the differential operational amplifier, the switch means being on-off controlled at every predetermined periods for changing the connection condition, so that a color unevenness is minimized when the liquid crystal panel is displayed. In a liquid crystal drive circuit for generating a drive voltage for a graduation display realized by applying a predetermined voltage to a liquid crystal panel, an output voltage error appearing at the time of an AC drive can be compensated in units of frames.
Abstract:
A method for forming pin-form wires or bumps on, for instance, an electrode pad of an electronic circuit element, in which a ball is formed on a tip end of a wire that passes through a capillary, the wire is then extended from the lower end of the capillary, a notch is formed in the portion of the wire between the ball and the capillary by a cutter, the ball is bonded to the electrode pad using the capillary, and the capillary is raised, thus pulling the wire and cutting the wire at the notch to form a pin-form wire or bump on the electrode pad.
Abstract:
A digital-to-analog converter has a single capacitor array having plural weighted capacitors, a first capacitor connected between an output node of an operational amplifier and an inverted input node of the operational amplifier and a second capacitor both connected to the inverted input node, and a pulse signal, a polarity control signal maintained in one of the high level and the low level over each pulse period of the pulse signal and a multi-bit digital signal are supplied to a controller; the controller causes a switching unit to selectively supply a first reference voltage and a second reference voltage to the weighted capacitors depending upon the logic level of the data bits of the digital signal and, thereafter, a third reference voltage to the weighted capacitors in a certain pulse period, and the switching unit carries out the switching action in the opposite order to the previous pulse period so that the operational amplifier varies an analog output signal with respect to a potential level supplied to the non-inverted input node thereof.
Abstract:
An amplification circuit is composed of a differential operational amplifier internally containing a current source circuit and having an inverted input connected to an output thereof through a parallel circuit composed of a first switch and a first capacitor. The inverted input is connected to one end of a second capacitor having the other end connected to a signal input terminal through a second switch. A non-inverted input of the differential operational amplifier is connected to a first reference voltage, and the other end of second capacitor is connected through a third switch to a second reference voltage. There is provided a current source generation circuit having a pair of input terminals connected to the non-inverted input and the inverted input of the differential operational amplifier, respectively, and an output connected to supply the internal current source circuit with a voltage value corresponding to a voltage difference between the non-inverted input and the inverted input of the differential operational amplifier, Thus, a slew rate controllable amplification circuit can be realized in which when a large slew rate is required, the current value of the internal current source circuit of the differential operational amplifier can be temporarily increased.