Abstract:
A device for providing a signal warning of a clogging of a dust filter. A pair of air flow speed sensors A and B are arranged downstream of two sections of a dust filter 1 arranged in an air duct 1, and the outputs of the sensors A and B are connected to a comparator 6 having an output connected to a warning device 7. An obstacle 3 is arranged upstream or downstream of one section of the filter 1. When the filter is new, the speed of the air flow detected by the sensor B without an obstacle is higher than that detected by the sensor A located downstream of the obstacle, but the speed of clogging at the section without an obstacle is much higher than that at the section located downstream of the obstacle, and thus, after continuous use, the air speed detected by the sensor B becomes equal to that detected by the sensor A. The values of the detected speeds are compared to determine a degree of clogging of the filter, and to issue a warning signal when needed.
Abstract:
A freezer-refrigerator for automotive vehicles, which includes a freezing chamber and a refrigeration chamber. The freezing chamber includes a freezing evaporator and a first cold storage member. The refrigeration chamber includes a refrigeration evaporator and a second cold storage member. Both evaporators are connected in series so that refrigerant flows from a compressor through the freezing evaporator and then through the refrigeration evaporator under a control of a solenoid valve which is controlled by signal from a temperature sensor provided in at least one of the chambers, thus controlling the freezing and refrigeration. The freezing temperature of the second cold storage member is set higher than that of the first cold storage member thereby to maintain the interior of the chambers at a temperature near the freezing temperature of the cold storage members for long time even after the compressor stops. The compressor has a plurality of cylinders with respective pistons at least one of which is operated for the freezing and refrigeration and the other of which are operated for the vehicle airconditioning.
Abstract:
A scroll compressor comprises a housing including therein a suction chamber, a stationary scroll member including an end plate and a scroll element and being fixedly disposed within the housing, a movable scroll member including an end plate and a scroll element and being movably disposed within the housing to be capable of revolving around a center axis of the stationary scroll member but being prevented from rotating around its own axis, a plurality of working chambers each of which is defined by both scroll elements and moves centripetally and circumferentially while decreasing a volume thereof upon revolution of the movable scroll member, a stationary partition extending from an inner wall surface of the housing to the scroll element of the stationary scroll member, a movable partition radially reciprocatingly projecting from the inner wall surface of the housing and abutting against the scroll element of the movable scroll member, two suction chamber sections into which the suction chamber is divided by both scroll members and both partitions, and two inlet ports opening to the respective suction chamber sections and introducing the respective fluids into the suction chamber sections therethrough, which have different pressure levels.
Abstract:
A refrigerator for vehicles has a cooling unit and a cool-keeping container adapted to be detachably connected to the cooling unit and contain goods to be cooled. The cooling unit includes a refrigerator evaporator connected to a refrigeration cycle of an automotive airconditioning refrigeration cycle on a vehicle and a coldness accumulating medium supported in heat exchange relationship with the evaporator. During evaporator operation, the coldness is accumulated in the coldness-accumulating medium and simultaneously transferred to the goods in the cool-keeping container. When the goods are cooled to a desired temperature, the cool-keeping container can be disconnected from the cooling unit and taken out of the vehicle with a heat insulating lid closing an opening formed in the container for the insertion and removal of the goods into and out of the container.
Abstract:
A differential in refrigerant adsorption rates of adsorbent during an adsorption process and during a desorption process is enlarged, realizing improvement in refrigeration capacity, and together therewith, the number of circulation systems for coolant fluid is reduced and the number of pumps is made smaller. A heat exchanger of a first stage evaporator and a cooler for air conditioning use are connected in series, and coolant fluid cooled by this heat exchanger is supplied to the cooler for air conditioning use. Additionally, a heat exchanger of a second stage evaporator and a radiator are connected in series, coolant fluid cooled by the radiator is further cooled by the heat exchanger, and this coolant fluid is alternately supplied to heat exchanging passages of first first stage and second stage adsorption devices and to heat exchanging passages of second first stage and second stage adsorption devices.
Abstract:
A centrifugal type separator is disposed on a downstream side of a temperature-operating type expansion valve. Liquid-phase refrigerant separated herein is again pressure-reduced by an aperture resistance and thereafter inducted to an inlet side of the evaporator by means of a liquid-phase refrigerant discharge passage. Meanwhile, gas-phase refrigerant separated by the separator is returned directly from a gas-phase refrigerant discharge passage to an evaporator outlet side passage, and after being united with superheated gas-phase refrigerant evaporated by the evaporator, is taken into a compressor. A temperature-sensing tube of the expansion valve is disposed further on the downstream side of the foregoing union location so as to enable the temperature of the superheated gas-phase refrigerant evaporated by the evaporator to be sensed accurately.
Abstract:
According to the present invention, a thermal expansion valve for a refrigerating cycle includes a housing having a throttle passage therein for expanding the refrigerant thereinto from the high-pressure side liquid refrigerant circuit, a valve element provided within the housing for adjusting opening degree of the throttle passage, and a thermosensitive element movably disposed within the housing. The thermosensitive element includes a case and a pressure responding member disposed within the case and displacing according to temperature and pressure of the refrigerant at the exit of an evaporator. The case of the thermosensitive element is integrally connected to the valve element, and the thermosensitive element and the valve element are so constructed as to integrally move according to the displacement of the pressure responding member. Accordingly, even if the valve element vibrates due to the sharp expansion of the refrigerant and the vibration transmits to the thermosensitive element case, as the thermosensitive element case is movable with respect to the housing and the housing are separated from the thermosensitive case, most of the vibration is prevented from being transmitted to the housing.
Abstract:
A refrigerant evaporator for a refrigeration cycle which separates a refrigerant of a two-phase gas and liquid state introduced from a pressure reduction means into a liquid refrigerant and a gas refrigerant by a gas and liquid separation means and distributes at least the liquid refrigerant to a plurality of refrigerant passageways of a heat exchange portion by a distribution means such as a tank. The distributed refrigerant has a single phase such as a liquid refrigerant and therefore the distribution is uniformly and equally carried out, the efficiency of the evaporator becomes higher, and the size can be reduced.
Abstract:
A sitting type water closet including a toilet bowl having an inner side and an outer side; a warm air duct for conveying warm air, formed on a first lower portion of the outer side of the toilet bowl as one piece therewith; a warm air outlet, disposed at an end of the warm air duct, for releasing warm air conveyed by the duct, the warm air outlet being at a mid position in the fore and aft direction of the toilet bowl and formed as one piece therewith; and a warm air guiding groove extending from the warm air outlet to the front of the toilet bowl, the warm air guiding groove being formed on a second lower portion of the outer side of the toilet bowl as one piece therewith.
Abstract:
An oil separator used in a refrigerating system. The oil separator comprises a body for forming a centrifugal oil separating chamber and an oil storage chamber, with a separating plate dividing the chambers. An inlet passage is connected tangentially to the oil separating chamber, to cause a swirl in the chamber, and a medium outlet passage extends inwardly from an end wall into the oil separating chamber. An oil outlet passage(s) is provided in the separating plate at a position near a periphery thereof. The oil separator body is formed integrally with the compressor housing and a ring member is fitted in an inner surface of the oil storage chamber, and a helically shaped narrow groove is provided on the outer surface thereof to form an oil returning passage. Also, the oil outlet passage can be provided in the separating plate at a position lower than a highest level of the oil storage chamber, thereby allowing the chambers to be arranged in a horizontal side by side relationship.