摘要:
An object of the invention is to change over accurately the switch part between use condition and nonuse condition. A signal transmitting and receiving circuit 100 for transmitting and receiving signals comprises a tuning and matching circuit 3 for transmitting and receiving the signals, a signal communication wire 4 transmitting the signals, and a wavelength wire 11 having a length (L) defined by a relational expression given in an Equation of L=N·(λ/4) where L: length of the wavelength wire, N: 1, 2, 3, . . . , and λ: wavelength. The circuit 100 also comprises a switch part 12 changing over between a grounded connection target and an ungrounded connection target. Further, the tuning and matching circuit 100 is mutually connected to the signal communication wire 11, and the wavelength wire 11 is constituted such that one end thereof is connected between the tuning and matching circuit 3 and the signal communication wire 4, and the other end thereof is connected to the switch part 12.
摘要:
An object of the invention is to change over accurately the switch part between use condition and nonuse condition. A signal transmitting and receiving circuit 100 for transmitting and receiving signals comprises a tuning and matching circuit 3 for transmitting and receiving the signals, a signal communication wire 4 transmitting the signals, and a wavelength wire 11 having a length (L) defined by a relational expression given in an Equation of L=N·(λ/4) where L: length of the wavelength wire, N: 1, 2, 3, . . . , and λ: wavelength. The circuit 100 also comprises a switch part 12 changing over between a grounded connection target and an ungrounded connection target. Further, the tuning and matching circuit 100 is mutually connected to the signal communication wire 11, and the wavelength wire 11 is constituted such that one end thereof is connected between the tuning and matching circuit 3 and the signal communication wire 4, and the other end thereof is connected to the switch part 12.
摘要:
A superconducting coil whose shape can be modified after it is shaped and a superconducting rotating machine with the superconducting coil are provided. The superconducting coil has an feature that the superconducting coil 1 comprising a superconducting material wire 5 coated with an insulation material and a coil frame 4 on which the superconducting material wire 5 is wound, the coil frame 4 comprising a first member 2 being a thin plate in a circular ring shape and a second member 3 jointed with an inner periphery portion of the first member 2, the first member inner periphery portion extending from the jointed portion toward an outer periphery of the first member, wherein the superconducting material wire 5 is wound between the first member 2 and the second member 3, which constitute the coil frame 4.
摘要:
A superconducting coil whose shape can be modified after it is shaped and a superconducting rotating machine with the superconducting coil are provided. The superconducting coil has an feature that the superconducting coil 1 comprising a superconducting material wire 5 coated with an insulation material and a coil frame 4 on which the superconducting material wire 5 is wound, the coil frame 4 comprising a first member 2 being a thin plate in a circular ring shape and a second member 3 jointed with an inner periphery portion of the first member 2, the first member inner periphery portion extending from the jointed portion toward an outer periphery of the first member, wherein the superconducting material wire 5 is wound between the first member 2 and the second member 3, which constitute the coil frame 4.
摘要:
An NMR signal acquisition device that can increase the magnetic field homogeneity in a high frequency magnetic field by one of the following. (a) Current paths each having a different inductance are provided to adjust the diversion ratio of the current, (b) A current path branch point is provided in an intermediate part of the winding of a solenoidal coil so that there are more current paths in the intermediate part of the winding than in the current paths connected to the feeding points at both ends, (c) The radiuses of current paths are adjusted, (d) Winding pitches in the axis direction are adjusted, (e) Current path widths are adjusted, and (f) The solenoidal coil has both positive direction current paths and negative direction current paths.
摘要:
An NMR signal acquisition device that can increase the magnetic field homogeneity in a high frequency magnetic field by one of the following. (a) Current paths each having a different inductance are provided to adjust the diversion ratio of the current, (b) A current path branch point is provided in an intermediate part of the winding of a solenoidal coil so that there are more current paths in the intermediate part of the winding than in the current paths connected to the feeding points at both ends, (c) The radiuses of current paths are adjusted, (d) Winding pitches in the axis direction are adjusted, (e) Current path widths are adjusted, and (f) The solenoidal coil has both positive direction current paths and negative direction current paths.
摘要:
An NMR signal acquisition device that can increase the magnetic field homogeneity in a high frequency magnetic field by one of the following. (a) Current paths each having a different inductance are provided to adjust the diversion ratio of the current, (b) A current path branch point is provided in an intermediate part of the winding of a solenoidal coil so that there are more current paths in the intermediate part of the winding than in the current paths connected to the feeding points at both ends, (c) The radiuses of current paths are adjusted, (d) Winding pitches in the axis direction are adjusted, (e) Current path widths are adjusted, and (f) The solenoidal coil has both positive direction current paths and negative direction current paths.
摘要:
Provided is an electron microscope capable of enhancing a magnetic shield function even though the structure thereof has an objective tens that projects into a sample chamber space. The electron microscope includes: an objective lens (6) which focuses an electron beam to irradiate a sample (4) with; a sample chamber (5) which forms a sample space to contain the sample (4); a sample chamber magnetic shield (7) provided inside the sample chamber (5); and an objective lens magnetic shield (8) of a tubular shape which surrounds the periphery of the objective lens (6). A first and a second hole, which face to each other in a traveling direction of the electron beam, are provided in an upper plate (10) serving as an upper wall of the sample chamber (5) and in an upper shield (9) of the sample chamber magnetic shield (7). The objective lens (6) is held inside the first hole provided in the upper plate (10). A lower end of the objective lens (6) is disposed at a position lower than a lower end of the upper plate (10), and at a position of the second hole provided in the upper shield (9) or at a position near this position. The objective lens magnetic shield (8) is positioned inside the first hole, and a lower end thereof is connected to the upper shield (9).
摘要:
Provided is an electron microscope capable of enhancing a magnetic shield function even though the structure thereof has an objective tens that projects into a sample chamber space. The electron microscope includes: an objective lens (6) which focuses an electron beam to irradiate a sample (4) with; a sample chamber (5) which forms a sample space to contain the sample (4); a sample chamber magnetic shield (7) provided inside the sample chamber (5); and an objective lens magnetic shield (8) of a tubular shape which surrounds the periphery of the objective lens (6). A first and a second hole, which face to each other in a traveling direction of the electron beam, are provided in an upper plate (10) serving as an upper wall of the sample chamber (5) and in an upper shield (9) of the sample chamber magnetic shield (7). The objective lens (6) is held inside the first hole provided in the upper plate (10). A lower end of the objective lens (6) is disposed at a position lower than a lower end of the upper plate (10), and at a position of the second hole provided in the upper shield (9) or at a position near this position. The objective lens magnetic shield (8) is positioned inside the first hole, and a lower end thereof is connected to the upper shield (9).
摘要:
When using a moving magnet type linear motor pair for a moving stage, the magnetic field in a space defined by the linear motor pair varies greatly in association with the movement of movable bodies. For this reason, 4N sets (N is a natural number) of magnet pairs 12 are disposed in mirror symmetry with reference to the center plane of a movable body 3 for a linear motor. The magnet pairs 12 are arranged in such a manner that the polarities of the adjoining pair at the center line 19 of the movable body are set same and the polarities thereof are set to alternate as in an N pole and a S pole according to when the pairs move away from the center. When a linear motor pair is formed by disposing two sets of such linear motors in parallel, and with this linear motor pair a stage is driven, the magnetic field variation in the space defined by the linear motor pair caused in association with the movement of movable bodies is suppressed. When such linear motor pair is utilized in a moving stage, for example, for an electron microscope and the like, a highly accurate electron beam image is observable.