Abstract:
A magnetic sensor with increased sensitivity, lower noise, and improved frequency response is described. The sensor's free layer is ribbon shaped and is closely flanked at each long edge by a ribbon of magnetically soft, high permeability material. The side stripes of soft magnetic material absorb external field flux and concentrate the flux to flow into the sensor's edges to promote larger MR sensor magnetization rotation. The free layer may be deposited simultaneously with the soft magnetic layer when they are aligned in the same plane. When the flux absorbing stripes are positioned above or below the MR sensor, then the free layer and flux absorbing stripes are deposited in separate steps.
Abstract:
A magnetic sensor with increased sensitivity, lower noise, and improved frequency response is described. The sensor's free layer is ribbon shaped and is closely flanked at each long edge by a ribbon of magnetically soft, high permeability material. The side stripes of soft magnetic material absorb external field flux and concentrate the flux to flow into the sensor's edges to promote larger MR sensor magnetization rotation. Side stripes may be located in the plane of the free layer a maximum distance of 0.1 microns, above a plane that includes a top surface of the free layer, or below a plane that includes the bottom surface of the magnetic sensor. Edges of each side stripe may be aligned above or below a portion of the magnetic sensor.
Abstract:
A magnetic sensor with increased sensitivity, lower noise, and improved frequency response is described. The sensor's free layer is ribbon shaped and is closely flanked at each long edge by a ribbon of magnetically soft, high permeability material. Side stripes of soft magnetic material absorb external field flux and concentrate the flux to flow into the sensor's edges to promote larger MR sensor magnetization rotation. Side stripes may be located in the plane of the free layer a maximum distance of 0.1 microns, above a plane that includes a free layer top surface, or below a plane that includes the magnetic sensor bottom surface. Edges of each side stripe may be aligned above or below a portion of the magnetic sensor. Moreover, each side stripe may have a tapered edge such that the side stripes have increasing thickness with increasing distance from the magnetic sensor.
Abstract:
A magnetic sensor with increased sensitivity, lower noise, and improved frequency response is described. The sensor's free layer is ribbon shaped and is closely flanked at each long edge by a ribbon of magnetically soft, high permeability material. The side stripes of soft magnetic material absorb external field flux and concentrate the flux to flow into the sensor's edges to promote larger MR sensor magnetization rotation. The free layer may be deposited simultaneously with the soft magnetic layer when they are aligned in the same plane. When the flux absorbing stripes are positioned above or below the MR sensor, then the free layer and flux absorbing stripes are deposited in separate steps.
Abstract:
A magnetic sensor with increased sensitivity, lower noise, and improved frequency response is described. The sensor's free layer is ribbon shaped and is closely flanked at each long edge by a ribbon of magnetically soft, high permeability material. The side stripes of soft magnetic material absorb external field flux and concentrate the flux to flow into the sensor's edges to promote larger MR sensor magnetization rotation. Side stripes may be located in the plane of the free layer a maximum distance of 0.1 microns, above a plane that includes a top surface of the free layer, or below a plane that includes the bottom surface of the magnetic sensor. Edges of each side stripe may be aligned above or below a portion of the magnetic sensor.
Abstract:
A magnetic sensor with increased sensitivity, lower noise, and improved frequency response is described. The sensor's free layer is ribbon shaped and is closely flanked at each long edge by a ribbon of magnetically soft, high permeability material. Side stripes of soft magnetic material absorb external field flux and concentrate the flux to flow into the sensor's edges to promote larger MR sensor magnetization rotation. Side stripes are located in the plane of the free layer at a maximum distance of 0.1 microns from each side of the free layer. The free layer has a width 1 micron, and an aspect ratio (thickness/width) of at least 5. Preferably, Mfilmtfilm>Mfreetfree, where Mfilm and Mfree are the magnetization of the soft magnetic layers and free layer, respectively, and ffilm and tfree are the thickness of the soft magnetic layers and free layer, respectively.
Abstract:
We describe the manufacturing process for and structure of a CPP MTJ MRAM unit cell that utilizes transfer of spin angular momentum as a mechanism for changing the magnetic moment direction of a free layer. The cell is formed of a vertically or horizontally series connected sequence of N sub-cells, each sub-cell being an identical MTJ element. A statistical population of such multiple sub-cell unit cells has a variation of resistance that is less by a factor of N−1/2 than that of a population of single sub-cells. As a result, such unit cells have an improved read margin while not requiring an increase in the critical switching current.
Abstract:
We describe the manufacturing process for and structure of a CPP MTJ MRAM unit cell that utilizes transfer of spin angular momentum as a mechanism for changing the magnetic moment direction of a free layer. The cell is formed of a vertically or horizontally series connected sequence of N sub-cells, each sub-cell being an identical MTJ element. A statistical population of such multiple sub-cell unit cells has a variation of resistance that is less by a factor of N−1/2 than that of a population of single sub-cells. As a result, such unit cells have an improved read margin while not requiring an increase in the critical switching current.