Abstract:
A force based touch interface device comprising a touch substrate, a torsion preventing structure for preventing torsion of the touch substrate by an externally-applied force touch, a plurality of sensors for measuring the force touch applied to the touch substrate at different positions, an input device for applying the force touch onto the touch substrate, and a controller for measuring force data using the plurality of sensors when the force touch is applied onto the touch substrate, for estimating force data for symmetrical points for touch points to which the force touch is applied using the measured force data, and for comparing the measured force data and the estimated force data with ideal force data to generate a calibration matrix for correcting a process error.
Abstract:
The present disclosure relates to a touch input device. The touch input device includes a first touch sensing member which is provided with a first touch surface. A second touch sensing member is disposed across the first touch sensing member, and is provided with a second touch surface that is located on the opposite side of the first touch sensing member. A suspension is provided to be deformable in response to a touch direction when a touch is applied to one of the first touch sensing member and the second touch sensing member. A force sensor is provided in the suspension.
Abstract:
A touch input device includes a first sensor having a first surface to which a touch is input, and a second surface opposing the first surface, and a second sensor connected to the second surface of the first sensor, and spaced apart from the first sensor in a vertical direction, wherein the first sensor measures a first position of the touch input to the first surface, wherein the second sensor measures a force caused by the touch input to the first surface of the first sensor, and calculates a second position by applying the force measured by the second sensor to force and moment equilibrium equations, when a distance between the first position and the second position is greater than or less than a threshold, the touch input to the first surface of the first sensor is determined to be a shear force or a sliding gesture, respectively.
Abstract:
The present disclosure relates to an apparatus and method for recognizing a user input. The apparatus comprises a sensor configured to sense an acoustic wave signal generated by knocking a surface of a medium, an extractor configured to separate an initial pulse signal from the acoustic wave signal and extract signal characteristic of the separated initial pulse signal, and a controller configured to recognize a knocking gesture based on the signal characteristic extracted by the extractor and generate a corresponding control signal.
Abstract:
A touch input device includes a touch sensing element having at least two input parts partitioned by at least one partition line, a plurality of force sensors mounted on a bottom surface of the touch sensing element, and at least one support member mounted on the bottom surface of the touch sensing element to provide reaction force to an elastic sensing element in a vertical direction and serving as the partition line. In at least one of the two input parts, a moment based on a shearing force may be canceled by the support member.
Abstract:
An apparatus for recognizing a touch input includes: a touch input detector detecting a touch input signal depending on a force-based touch input on a touch pad; a vehicle movement detector sensing movement of a vehicle; and a processor configured to detect an abnormal signal generated by the movement of the vehicle in the touch input signal and to recognize the touch input by performing signal interpolation on an abnormal signal generation section in which the abnormal signal is generated.
Abstract:
An apparatus and method that provide a customized input-service is provided. The apparatus includes at least one input unit that generates an sound wave based on an exterior input and a sound wave sensor that converts an sound signal for the sound wave into an electric signal. In addition, a controller analyzes the electric signal received from the sound wave sensor to confirm where the exterior input is generated and detects a control signal based on the exterior input and performs an operation based on the control signal from operations allocated to the input unit.
Abstract:
A device that causes a driver not to feel passive task-related fatigue by performing interaction with the driver at a time when the driver feeling passive task-related fatigue, thereby promoting safe driving. In particular, phrase “the interaction with the driver” refers to a series of operations viewing quiz data or beat sequence data to the driver, receiving a response, and visually, acoustically, and tactilely informing a result according to the response, and a control of each component for the operation.
Abstract:
An apparatus that senses a minor collision of a vehicle is configured to minimize damage to the vehicle by actuating a brake system of the vehicle upon sensing a scratch of the vehicle by analyzing a sound (e.g., a sound wave signal) generated when a surface of the vehicle is scratched by, for example, a column of a building, the other vehicle, or the like when the vehicle is driven forward or backward at or below a certain speed.
Abstract:
An apparatus for checking a rear lamp includes a sensor and a controller. The sensor is disposed in at least one rear lamp and configured to obtain a first signal generated from the outside. The controller is configured to turn on the at least one rear lamp according to the first signal.