Abstract:
In this application, a same input device may randomly switch a focus device between a plurality of terminal devices. Before and after the focus device is switched, the input device may simultaneously maintain communication connections to the plurality of terminal devices, and exchange, in a background, information with a non-focus device based on a communication connection between the input device and the non-focus device. Based on the solutions disclosed in this application, the input device can implement seamless focus migration between the plurality of terminal devices based on a convenient operation of a user without relying on a wireless local area network (WLAN).
Abstract:
An embodiment of the present disclosure contemplates a data sending and receiving method and apparatus. A first FEC unit of a sending device sends, by using a first channel, a first data stream on which first FEC encoding has been performed; a second FEC unit of the sending device sends, by using a second channel, a second data stream on which second FEC encoding has been performed; and the sending device performs interleaving on the first data stream and the second data stream, to obtain an output data stream, and sends the output data stream to a receiving device.
Abstract:
An embodiment of the present invention discloses a data sending and receiving method. A first FEC unit of a sending device sends, by using a first channel, a first data stream on which first FEC encoding has been performed; a second FEC unit of the sending device sends, by using a second channel, a second data stream on which second FEC encoding has been performed; and the sending device performs interleaving on the first data stream and the second data stream, to obtain an output data stream, and sends the output data stream to a receiving device and error correction capability of a receiving device could be improved. In addition, in the present invention, an operation of writing by row and reading by column does not need to be performed. Therefore, no delay is generated.
Abstract:
A data processing method and an apparatus, where the method includes receiving m data streams using m receive ports respectively, where the m data streams include m×m data units, and the m×m data units form an m-order matrix A, keeping a location of one element in each row in the matrix A unchanged and moving remaining m−1 elements to remaining m−1 rows respectively in order to form an m-order matrix B, where a column number of each element in the remaining m−1 elements in the matrix A before the element is moved equals a column number of the element in the remaining m−1 elements in the matrix B after the element is moved, and sending using m transmit ports, the m×m elements in the matrix B to m different levels of a pulse amplitude modulation (PAM) circuit respectively for performing modulation.
Abstract:
Embodiments of the present invention provide a data processing method and apparatus, including: receiving X data streams through X physical lanes of an Ethernet interface, converting the X data streams into M data streams transmitted on M virtual lanes, and performing bandwidth adjustment on each data stream of the M data streams to obtain M first data streams; receiving Y data streams through Y physical lanes of the Ethernet interface, converting the Y data streams into N data streams transmitted on N virtual lanes, and performing bandwidth adjustment on each data stream of the N data streams to obtain N second data streams. In addition, a corresponding apparatus is further provided. By using the foregoing technical solution, received data streams of different sources and different frequencies can be processed.
Abstract:
A packet forwarding method to shorten a transmission latency of an elephant flow is provided. In the method, for a first packet flow used as an elephant flow, a network device may receive a plurality of packets of the first packet flow, and determine a characteristic parameter of the first packet flow based on the plurality of packets, where the characteristic parameter of the first packet flow is used to indicate a transmission latency of the first packet flow. After determining the characteristic parameter of the first packet flow, the network device determines a forwarding policy of the first packet flow based on the characteristic parameter of the first packet flow. The forwarding policy of the first packet flow is used to indicate latency sensitivity of the first packet flow.
Abstract:
An embodiment of the present disclosure contemplates a data sending and receiving method and apparatus. A first FEC unit of a sending device sends, by using a first channel, a first data stream on which first FEC encoding has been performed; a second FEC unit of the sending device sends, by using a second channel, a second data stream on which second FEC encoding has been performed; and the sending device performs interleaving on the first data stream and the second data stream, to obtain an output data stream, and sends the output data stream to a receiving device and error correction capability of a receiving device could be improved. In addition, in the present disclosure, an operation of writing by row and reading by column does not need to be performed. Therefore, no delay is generated.
Abstract:
A data distribution method, a data aggregation method, and related apparatuses are disclosed. The data distribution method may include: receiving a first packet stream; dividing the first packet stream to obtain a first data block stream; sending the first data block stream to a first circuit; processing, by the first circuit, the first data block stream to obtain a first data stream; distributing, by the first circuit, the first data stream to N1 second circuits of M second circuits in a PHY, where M is greater than N1, N1 is a positive integer, and M is a positive integer; and processing, by the N1 second circuits, the received first data stream to obtain N1 first code streams. The technical solutions provided by the embodiments of the present invention help to meet a requirement for complex bandwidth configuration and extend an application scenario.
Abstract:
An embodiment of the present invention discloses a data sending and receiving method. A first FEC unit of a sending device sends, by using a first channel, a first data stream on which first FEC encoding has been performed; a second FEC unit of the sending device sends, by using a second channel, a second data stream on which second FEC encoding has been performed; and the sending device performs interleaving on the first data stream and the second data stream, to obtain an output data stream, and sends the output data stream to a receiving device and error correction capability of a receiving device could be improved. In addition, in the present invention, an operation of writing by row and reading by column does not need to be performed. Therefore, no delay is generated.
Abstract:
An embodiment of the present invention discloses a data sending and receiving method. A first FEC unit of a sending device sends, by using a first channel, a first data stream on which first FEC encoding has been performed; a second FEC unit of the sending device sends, by using a second channel, a second data stream on which second FEC encoding has been performed; and the sending device performs interleaving on the first data stream and the second data stream, to obtain an output data stream, and sends the output data stream to a receiving device and error correction capability of a receiving device could be improved. In addition, in the present invention, an operation of writing by row and reading by column does not need to be performed. Therefore, no delay is generated.