摘要:
The present invention provides a light emitting device comprising a first light emitting portion that emits white light at a color temperature of 6000K or more and a second light emitting portion that emits white light at a color temperature of 3000K or less, which include light emitting diode chips and phosphors and are independently driven. The present invention has an advantage in that a light emitting device can be diversely applied in a desired atmosphere and use by realizing white light with different light spectrums and color temperatures. Particularly, the present invention has the effect on health by adjusting the wavelength of light or the color temperature according to the circadian rhythm of humans.
摘要:
Exemplary embodiments of the present invention relate to inorganic phosphors based on silicate compounds having improved stability under a resulting radiation load and resistance to atmospheric humidity, which are capable of converting higher-energy excitation radiation, i.e. ultraviolet (UV) or blue light, with high efficiency into a longer-wavelength radiation which may be in the visible spectral range. A calcium molar fraction x having a value between 0 and 0.05 is added to a silicate phosphor having the general formula Sr3-x-y-zCaxMIIySiO5:Euz.
摘要:
Disclosed is a light emitting device employing non-stoichiometric tetragonal Alkaline Earth Silicate phosphors. The light emitting device comprises a light emitting diode emitting light of ultraviolet or visible light, and non-stoichiometric luminescent material disposed around the light emitting diode. The luminescent material adsorbs at least a portion of the light emitted from the light emitting diode and emits light having a different wavelength from the absorbed light. The non-stoichiometric luminescent material has tetragonal crystal structure, and contains more silicon in the crystal lattice than that in the crystal lattice of silicate phosphors having stoichiometric crystal structure. The luminescent material is represented as the formula (BauSrvCawCux)3-y(Zn,Mg,Mn)zSi1+bO5+2b:Eua. Light emitting devices having improved temperature and humidity stability can be provided by employing the non-stoichiometric tetragonal Alkaline Earth Silicate phosphors.
摘要:
Exemplary embodiments of the present invention relate to inorganic phosphors based on silicate compounds having improved stability under a resulting radiation load and resistance to atmospheric humidity, which are capable of converting higher-energy excitation radiation, i.e. ultraviolet (UV) or blue light, with high efficiency into a longer-wavelength radiation which may be in the visible spectral range. A calcium molar fraction x having a value between 0 and 0.05 is added to a silicate phosphor having the general formula Sr3-x-y-zCaxMIIySiO5:Euz.
摘要:
A surface-modified silicate luminophore includes a silicate luminophore and a coating includes at least one of (a) a fluorinated coating including a fluorinated inorganic agent, a fluorinated organic agent, or a combination of fluorinated inorganic and organic agents, the fluorinated coating generating hydrophobic surface sites and (b) a combination of the fluorinated coating and at least one moisture barrier layer. The moisture barrier layer includes MgO, Al2O3, Y2O3, La2O3, Gd2O3, Lu2O3, and SiO2 or the corresponding precursors, and the coating is disposed on the surface of the silicate luminophore.
摘要翻译:表面改性硅酸盐发光体包括硅酸盐发光体,涂层包括(a)包含氟化无机物,氟化有机物或氟化无机和有机物的组合的氟化涂层中的至少一种,氟化涂层产生疏水性 表面部位和(b)氟化涂层和至少一个防潮层的组合。 防潮层包括MgO,Al 2 O 3,Y 2 O 3,La 2 O 3,Gd 2 O 3,Lu 2 O 3和SiO 2或相应的前体,并且涂层设置在硅酸盐发光体的表面上。
摘要:
A luminescent material is disclosed. The luminescent material may include a first compound having a host lattice comprising first ions and oxygen. A first portion of the first ions may be substituted by copper ions. In one embodiment, the host lattice may include silicon, the copper ions may be divalent copper ions and the first compound may have an Olivin crystal structure, a β-K2SO4 crystal structure, a trigonal Glaserite (K3Na(SO4)2) or monoclinic Merwinite crystal structure, a tetragonal Ackermanite crystal structure, a tetragonal crystal structure or an orthorhombic crystal structure. In another embodiment, the copper ions do not act as luminescent ions upon excitation with the ultraviolet or visible light.
摘要翻译:公开了一种发光材料。 发光材料可以包括具有包含第一离子和氧的主晶格的第一化合物。 第一离子的第一部分可以被铜离子取代。 在一个实施例中,主晶格可以包括硅,铜离子可以是二价铜离子,并且第一化合物可以具有橄榄石晶体结构,β-K 2 SO 4 >晶体结构,三角晶硅酸盐(K 3 N 3 O 3 SO 4 SO 2)或单斜晶系的Merwinite晶体结构,四方晶系晶体结构, 四方晶体结构或正交晶体结构。 在另一个实施方案中,当用紫外线或可见光激发时,铜离子不作为发光离子。
摘要:
Exemplary embodiments of the present invention relate to light emitting devices including strontium oxyorthosilicate-type phosphors. The light emitting device includes a light emitting diode, which emits light in the UV or visible range, and phosphors disposed around the light emitting diode to absorb light emitted from the light emitting diode and emit light having a different wavelength from the absorbed light. The phosphors include an oxyorthosilicate phosphor having a general formula of Sr3-x-y-zCaxMIIySiO5: Euz with a calcium molar fraction in the range of 0
摘要:
A luminescent material is disclosed. The luminescent material may include a first compound having a host lattice comprising first ions and oxygen. A first portion of the first ions may be substituted by copper ions. In one embodiment, the host lattice may include silicon, the copper ions may be divalent copper ions and the first compound may have an Olivine crystal structure, β-K.2SO4 crystal structure, a trigonal Glaserite (K3Na(SO4)2) or monoclinic Merwinite crystal structure, a tetragonal Ackermanite crystal structure, a tetragonal crystal structure or an orthorhombic crystal structure. In another embodiment, the copper ions do not act as luminescent ions upon excitation with the ultraviolet or visible light.
摘要翻译:公开了一种发光材料。 发光材料可以包括具有包含第一离子和氧的主晶格的第一化合物。 第一离子的第一部分可以被铜离子取代。 在一个实施例中,主晶格可以包括硅,铜离子可以是二价铜离子,并且第一化合物可以具有橄榄石晶体结构,K 2 SO 4晶体结构,三角形镓石(K3Na(SO4)2)或 单斜晶系的Merwinite晶体结构,四方晶系晶体结构,四方晶体结构或正交晶体结构。 在另一个实施方案中,当用紫外线或可见光激发时,铜离子不作为发光离子。
摘要:
A light emitting device can be characterized as including a light emitting diode configured to emit light and a phosphor configured to change a wavelength of the light. The phosphor substantially covers at least a portion of the light emitting diode. The phosphor includes a compound having a host material. Divalent copper ions and oxygen are components of the host material.
摘要:
A light emitting device is disclosed. The light emitting device may include a light emitting diode (LED) for emitting light and phosphor adjacent to the LED. The phosphor may be excitable by light emitted by the LED and may include a first compound having a host lattice comprising first ions and oxygen. In one embodiment, the host lattice may include silicon, the copper ions may be divalent copper ions and first compound may have an Olivin crystal structure, a β-K2SO4 crystal structure, a trigonal Glaserite (K3Na(SO4)2) or monoclinic Merwinite crystal structure, a tetragonal Ackermanite crystal structure, a tetragonal crystal structure or an orthorhombic crystal structure. In another embodiment, the copper ions do not act as luminescent ions upon excitation with the light emitted by the LED.
摘要翻译:公开了一种发光器件。 发光器件可以包括用于发射与LED邻近的光和磷光体的发光二极管(LED)。 磷光体可以由LED发出的光可激发,并且可以包括具有包含第一离子和氧的主晶格的第一化合物。 在一个实施方案中,主晶格可以包括硅,铜离子可以是二价铜离子,并且第一化合物可以具有橄榄石晶体结构,β-K 2 SO 4晶体结构,三棱晶(K3Na(SO4)2))或单斜晶系 结构,四方晶体晶体结构,四方晶体结构或正交晶体结构。 在另一个实施方案中,当由LED发射的光激发时,铜离子不起荧光离子的作用。