摘要:
Reconfigurable logic devices and methods of programming the devices are disclosed. The logic device includes a look-up table (LUT) and at least one storage element configured for sampling LUT output signals. The LUT comprises a plurality of input signals, an array of programmable impedance devices operably coupled to the input signals, and the LUT output signals. Each programmable impedance device in the array includes a first electrode operably coupled to one of the input signal, a second electrode disposed to form a junction wherein the second electrode at least partially overlaps the first electrode, and a programmable material disposed between the first electrode and the second electrode. The programmable material operably couples the first electrode and the second electrode such that each programmable impedance device exhibits a non-volatile programmable impedance. The array may be configured as a one-dimensional or two-dimensional array.
摘要:
A computing system for implementing at least one electronic circuit with gain comprises at least one two-dimensional molecular switch array. The molecular switch array is formed by assembling two or more crossed planes of wires into a configuration of devices. Each device comprises a junction formed by a pair of crossed wires and at least one connector species that connects the pair of crossed wires in the junction. The junction has a functional dimension in nanometers, and includes a switching capability provided by both (1) one or more connector species and the pair of crossed wires and (2) a configurable nano-scale wire transistor having a first state that functions as a transistor and a second state that functions as a conducting semiconductor wire. Specific connections are made to interconnect the devices and connect the devices to two structures that provide high and low voltages.
摘要:
One embodiment of the present invention is a nanoscale shift register that can be used, in certain nanoscale and mixed-scale logic circuits, to distribute an input signal to individual nanowires of the logic circuit. In a described embodiment, the nanoscale shift register includes two series of nanoscale latches, each series controlled by common latch-control signals. Internal latches of each series of latches are alternatively interconnected with a previous latch of the other series and a next latch of the other series by two series of gates, each controlled by a gate signal line.
摘要:
Reconfigurable logic devices and methods of programming the devices are disclosed. The logic device includes a look-up table (LUT) and at least one storage element configured for sampling LUT output signals. The LUT comprises a plurality of input signals, an array of programmable impedance devices operably coupled to the input signals, and the LUT output signals. Each programmable impedance device in the array includes a first electrode operably coupled to one of the input signal, a second electrode disposed to form a junction wherein the second electrode at least partially overlaps the first electrode, and a programmable material disposed between the first electrode and the second electrode. The programmable material operably couples the first electrode and the second electrode such that each programmable impedance device exhibits a non-volatile programmable impedance. The array may be configured as a one-dimensional or two-dimensional array.
摘要:
One embodiment of the present invention is an array of nanoscale latches interconnected by a nanowire bus to form a latch array. Each nanoscale latch in the nanoscale-latch array serves as a nanoscale register, and is driven by a nanoscale control line. Primitive operations for the latch array can be defined as sequences of one or more inputs to one or more of the nanowire data bus and nanoscale control lines. In various latch-array embodiments of the present invention, information can be transferred from one nanoscale latch to another nanoscale latch in a controlled fashion, and sequences of information-transfer operations can be devised to implement arbitrary Boolean logic operations and operators, including NOT, AND, OR, XOR, NOR, NAND, and other such Boolean logic operators and operations, as well as input and output functions. Nanoscale-latch arrays can be combined and interconnected in an almost limitless number of different ways to construct arbitrarily complex, sequential, parallel, or both parallel and sequential computing engines that represent additional embodiments of the present invention.
摘要:
Reconfigurable logic devices and methods of programming the devices are disclosed. The logic device includes a look-up table (LUT) and at least one storage element configured for sampling LUT output signals. The LUT comprises a plurality of input signals, an array of programmable impedance devices operably coupled to the input signals, and the LUT output signals. Each programmable impedance device in the array includes a first electrode operably coupled to one of the input signal, a second electrode disposed to form a junction wherein the second electrode at least partially overlaps the first electrode, and a programmable material disposed between the first electrode and the second electrode. The programmable material operably couples the first electrode and the second electrode such that each programmable impedance device exhibits a non-volatile programmable impedance. The array may be configured as a one-dimensional or two-dimensional array.
摘要:
Various embodiments of the present invention are directed to implementation and use of logic-state-storing, impedance-encoded nanoscale, impedance-encoded latches that store logic values as impedance states within nanoscale electronic circuits that employ impedance-driven logic. In certain of these embodiments, use of nanoscale, impedance-encoded latches together with nanoscale electronic circuits that employ impedance-driven logic avoids cumulative degradation of voltage margins along a cascaded series of logic circuits and provides for temporary storage of intermediate logic values, allowing for practical interconnection of nanowire-crossbar-implemented logic circuits through nanoscale, impedance-encoded latches to other nanowire-crossbar-implemented logic circuits in order to implement complex, nanoscale-logic-circuit pipelines, nanoscale-logic-circuit-based state machines, and other complex logic devices with various different interconnection topologies and corresponding functionalities.
摘要:
A network connection scheme for a direct or an indirect network. The network is implemented in two levels of circuit boards. Every board in the first level crosses all the boards in the second level, with every processor in the first level circuit board coupled to at least two processors that are on two second level circuit boards. This scheme significantly reduces the difficulty in implementing the network.
摘要:
Methods for inputting a data-value pattern into a nanowire crossbar, for inputting a data-value pattern into a nanowire crossbar that support computer instructions stored in a computer-readable medium, and for distributing a received data value to each of a set of nanowires that support control logic implemented in logic circuits are provided. First and second nanoscale shift registers are employed, the first having output signal lines that form or interconnect with a first parallel set of nanowire-crossbar nanowires and the second having output signal lines that form or interconnect with a second parallel set of nanowire-crossbar nanowires. A first pattern of values is stored in the first shift register and a second pattern of values is stored in the second shift register using voltage signals below the WRITE voltage for junctions of the crossbar. Voltage signals greater than or equal to the WRITE threshold are applied for junctions of the crossbar to write the pattern of data values into the crossbar.
摘要:
In one embodiment of the present invention, a nanoscale latch is implemented by interconnecting an enable line, two control lines, and a pull-down line, when needed, to a signal line carrying encoded binary values to be latched and subsequently output. The enable line is interconnected with the signal line through a field-effect-transistor-like nanoscale junction. Both control lines are interconnected with the signal line through asymmetric-switch nanoscale junctions of like polarities. The pull-down line, when needed, is interconnected with the signal line through a resistive nanoscale junction. Inputting a sequence of signals to the enable and control lines allows a value input from the signal line to be stored and subsequently output to the signal line. In various additional embodiments, an array of nanoscale latches can be implemented by overlaying enable and control lines, and a pull-down line when needed, over a set of parallel nanowires.