Abstract:
A server rack sub-assembly includes at least one motherboard having a perimeter; a plurality of heat-generating electronic devices mounted on the motherboard in an area of the motherboard thermally decoupled from the motherboard perimeter; one or more brackets including heat transfer surfaces and attached to the motherboard along at least a portion of the motherboard perimeter; and a heat transfer device thermally coupled to the area of the motherboard that is thermally decoupled from the motherboard perimeter and the one or more brackets. The one or more brackets are adapted to receive a cooling airflow circulated over the bracket and to convectively transfer heat into the cooling airflow and are further adapted to couple the motherboard to a server rack assembly. The heat transfer device is arranged to conductively transfer heat from the one or more electronic devices to the brackets.
Abstract:
Systems and methods for reducing temperature of an optical signal source co-packaged with a driver are provided. An optical transmitter can include a housing. The optical transmitter can include an optical signal source positioned within the housing. The optical transmitter can include a signal source driver positioned within the housing and configured to control an output of the optical signal source. The optical transmitter can include a substrate mounted on an interior surface of the housing and having a microwave waveguide coupled to it. The microwave waveguide can be configured to direct electrical signals originating outside the housing to the signal source driver. The substrate is can also be configured to limit heat transfer from the signal source driver to the optical signal source.
Abstract:
A server rack sub-assembly includes at least one motherboard having a perimeter; a plurality of heat-generating electronic devices mounted on the motherboard in an area of the motherboard thermally decoupled from the motherboard perimeter; one or more brackets including heat transfer surfaces and attached to the motherboard along at least a portion of the motherboard perimeter; and a heat transfer device thermally coupled to the area of the motherboard that is thermally decoupled from the motherboard perimeter and the one or more brackets. The one or more brackets are adapted to receive a cooling airflow circulated over the bracket and to convectively transfer heat into the cooling airflow and are further adapted to couple the motherboard to a server rack assembly. The heat transfer device is arranged to conductively transfer heat from the one or more electronic devices to the brackets.
Abstract:
The present disclosure discusses an improved optical transceiver. The optical transceiver of the present disclosure includes an optical transmitter and an optical receiver coupled to an area of a printed circuit board that includes a plurality of thermal microvias. The thermal microvias are coupled to a heat sink or other heat dissipater and provide a path from the components of the optical transceiver to the heat dissipater for heat to travel.
Abstract:
The present disclosure discusses an improved optical transceiver. The optical transceiver of the present disclosure includes an optical transmitter and an optical receiver coupled to an area of a printed circuit board that includes a plurality of thermal microvias. The thermal microvias are coupled to a heat sink or other heat dissipater and provide a path from the components of the optical transceiver to the heat dissipater for heat to travel.
Abstract:
The present disclosure discusses an improved optical transceiver. The optical transceiver of the present disclosure includes an optical transmitter and an optical receiver that are spatially separated. In some implementations, the optical receiver and optical transmitter are staggered from one another. Each of the optical receiver and the optical transmitter and housed within a separate optical lens. In some implementations, the separation of the components reduces mechanical, thermal, and electrical cross talk between the optical transmitter and the optical receiver. The separation of the components can also ease the constraints of the optical alignment between the optical transmitter and the optical receiver and each of their respective lenses.