Abstract:
A connection member includes a first side and a second side opposite the first side. The connection member also includes a third side connecting the first and second sides, the third side including a first portion, a second portion, and a third portion, a first edge separating the first portion from the second portion and a second edge separating the second portion from the third portion. A first flange extends along the first edge and a second flange extends along the second edge such that the first and second flanges are separated by the second portion.
Abstract:
A connection member includes a first side and a second side opposite the first side. The connection member also includes a third side connecting the first and second sides, the third side including a first portion, a second portion, and a third portion, a first edge separating the first portion from the second portion and a second edge separating the second portion from the third portion. A first flange extends along the first edge and a second flange extends along the second edge such that the first and second flanges are separated by the second portion.
Abstract:
A system for providing structural transmittal of force through a vehicle body of a mid-engine vehicle is provided. The system includes an elongated single member torsional box spanning a passenger compartment from a vehicle-forward portion of the passenger compartment to a vehicle-rearward portion of the passenger compartment, parallel to a longitudinal axis of the vehicle body, and laterally centered upon a longitudinal centerline of the vehicle body. The system further includes four rails in a vehicle-forward position relative to the elongated single member torsional box, parallel to the longitudinal axis of the vehicle body, and offset from the elongated single member torsional box. The system further includes four diagonal support members, each diagonal support member being connected at a first end to one of the four rails and at a second end to the elongated single member torsional box.
Abstract:
A vehicle underbody includes a system of connected unitized underbody components including a front quadrant system having a left front unitized underbody component and a right front unitized underbody component, a center system, and a rear quadrant system having a left rear unitized underbody component and a right rear unitized underbody component. A first rail element is loosely connected to the left front unitized underbody component and the left rear unitized underbody component, and a second rail element is loosely connected to the right front unitized underbody component and the right rear unitized underbody component.
Abstract:
A vehicle underbody includes a system of connected unitized underbody components including a front quadrant system having a left front unitized underbody component and a right front unitized underbody component, a center system, and a rear quadrant system having a left rear unitized underbody component and a right rear unitized underbody component. A first rail element is loosely connected to the left front unitized underbody component and the left rear unitized underbody component, and a second rail element is loosely connected to the right front unitized underbody component and the right rear unitized underbody component.
Abstract:
A load impact management system for a vehicle includes a plurality of cross-vehicle support members extending from a first side of the vehicle to a second side of the vehicle opposite the first side of the vehicle, a shock tower spaced apart from the plurality of cross-vehicle support members and fixed to the vehicle frame rail, a first structural member extending along a first plane, a second structural member extending along a second plane separate from the first plane, and a third structural member extending along a third plane separate from the first and second planes. The first structural member defines a first load path between the center tunnel and the shock tower, the second structural member defines a second load path between the center tunnel and the shock tower, and the third structural member defines a third load path between the center tunnel and the vehicle frame rail.
Abstract:
A system for providing structural transmittal of force through a vehicle body of a mid-engine vehicle is provided. The system includes an elongated single member torsional box spanning a passenger compartment from a vehicle-forward portion of the passenger compartment to a vehicle-rearward portion of the passenger compartment, parallel to a longitudinal axis of the vehicle body, and laterally centered upon a longitudinal centerline of the vehicle body. The system further includes four rails in a vehicle-forward position relative to the elongated single member torsional box, parallel to the longitudinal axis of the vehicle body, and offset from the elongated single member torsional box. The system further includes four diagonal support members, each diagonal support member being connected at a first end to one of the four rails and at a second end to the elongated single member torsional box.