Abstract:
A multi-layer bladder includes: a first bladder layer; a mask including a plurality of apertures; a second bladder layer bonded to the first bladder layer within the apertures in the mask and where the mask is not present between the first and second bladder layers, where the mask is configured to prevent bonding of the second bladder layer to the first bladder layer where the mask is present; and a fluid channel that is located between the first and second bladder layers and that extends to the mask from an outer edge of the multi-layer bladder.
Abstract:
A vaneless ventilation system includes a rigid duct and a vent assembly in fluid communication with the duct. The vent assembly includes a rigid housing defining an outlet, a bendable duct disposed inside the rigid housing, a linkage assembly coupled to the bendable duct to allow deflection of the bendable duct upon movement of the linkage assembly, and an actuation mechanism coupled to the linkage assembly, wherein actuation of the actuation mechanism causes the linkage assembly to move, thereby deflecting the bendable duct.
Abstract:
A vaneless ventilation system includes a rigid duct and a vent assembly in fluid communication with the duct. The vent assembly includes a rigid housing defining an outlet, a bendable duct disposed inside the rigid housing, a linkage assembly coupled to the bendable duct to allow deflection of the bendable duct upon movement of the linkage assembly, and an actuation mechanism coupled to the linkage assembly, wherein actuation of the actuation mechanism causes the linkage assembly to move, thereby deflecting the bendable duct.
Abstract:
An inflatable structure includes a top end cap, a bottom end cap, a bladder, a plurality of tethers, and an adjustment mechanism. The bladder is attached to the top and bottom end caps and configured to hold pressurized air therebetween. The plurality of tethers are disposed within the bladder. Each tether in the plurality of tethers has a first end coupled to the top end cap and a second end coupled to the bottom end cap. When the bladder is inflated, the plurality of tethers restrict a number of degrees of freedom of the inflatable structure and a type of the degrees of freedom. The adjustment mechanism is operable to move the second end of at least one tether in the plurality of tethers to adjust at least one of the number of the degrees of freedom and the type of the degrees of freedom.
Abstract:
A selectively rigidizable membrane for cargo management comprises a vacuum bladder, and a first architectural layer and a second architectural layer, each of the first and second architectural layers including a plurality of tiles interconnected by flexural elements, each of the tiles of the first and second architectural layers including at least one constraining element extending therefrom, wherein, when atmospheric pressure is present within the vacuum bladder, the first and second architectural layers are slidably moveable relative to one another and the membrane is flexible, and further wherein, when negative pressure is applied to the vacuum bladder, the first and second architectural layers are forced into engagement with one another, the constraining elements of the first and second architectural layers providing mechanical interference and preventing sliding movement of the first and second architectural layers relative to one another, causing the membrane to become substantially rigid.
Abstract:
Cargo systems are provided for vehicles that include, in one embodiment: a variable cargo surface disposed within a body of the vehicle behind one or more occupant seats, the variable cargo surface including: a low friction surface that facilitates movement of cargo within the cargo system, the low friction surface having a first coefficient of friction; a high friction surface that inhibits movement of cargo within the cargo system, the high friction surface having a second coefficient of friction that is greater than the first coefficient of friction; and a control device that selectively activates the low friction surface and the high friction surface based on conditions for the vehicle; wherein the low friction surface contacts the cargo within the cargo system when the low friction surface is activated; and the high friction surface contacts the cargo within the cargo system when the high friction surface is activated.
Abstract:
An inflatable control apparatus and deployment method thereof are provided. The apparatus includes an inflatable unit configured to receive and hold air pressure, a first rigid planar cap disposed at a first end of the inflatable unit, and a second rigid planar cap disposed at a second end of the inflatable unit.
Abstract:
A dielectric elastomer actuator includes an elastomeric film and an electrode material layer on opposing sides of the film. The elastomeric film includes a first section, a second section, and a transition section disposed between the first section and the second section. The electrode material layers are disposed on the transition section and the first and second sections. The first and second sections are restrained in a pre-stretched configuration in an axial and a lateral direction, while the transition section is not restrained in the axial direction. The transition section elongates in response to the application of a voltage to the electrode material layers, such that the first and second sections move apart, in the axial direction. Likewise, the transition section is configured to contract in an absence of a voltage applied to the electrode material layers, such that the first and second sections move apart, in the axial direction.
Abstract:
A system for controlling motion of a shape memory alloy (SMA) actuator includes a damper operatively connectable to the SMA actuator and having a movable portion that moves with the SMA actuator when the SMA actuator contracts during electrical activation. An electronic switch is operatively connectable to the SMA actuator and to the damper. The electronic switch has an open position preventing electrical power flow to the SMA actuator, and a closed position permitting electrical power flow to the SMA actuator. A biasing element applies a biasing force that urges the electronic switch to the closed position. The damper overcomes the biasing element to move the switch to the open position only when velocity of the movable portion equals or exceeds a predetermined threshold velocity, and to return to the closed position when the velocity of the movable portion falls below the predetermined threshold velocity.
Abstract:
Cargo systems are provided for vehicles that include, in one embodiment: a variable cargo surface disposed within a body of the vehicle behind one or more occupant seats, the variable cargo surface including: a low friction surface that facilitates movement of cargo within the cargo system, the low friction surface having a first coefficient of friction; a high friction surface that inhibits movement of cargo within the cargo system, the high friction surface having a second coefficient of friction that is greater than the first coefficient of friction; and a control device that selectively activates the low friction surface and the high friction surface based on conditions for the vehicle; wherein the low friction surface contacts the cargo within the cargo system when the low friction surface is activated; and the high friction surface contacts the cargo within the cargo system when the high friction surface is activated.